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The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is
concerned with discovering these dynamical equations and understanding their consequences. In this work, we
show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data,
however precise, is a provably computationally hard problem (it is NP-hard), both for classical and quantum
mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum
and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in
particular, dating back over 70 years).

A large part of physics is concerned with identifying the dy-
namical equations of physical systems and understanding their
consequences. But how do we deduce the dynamical equations
from experimental observations? Whether deducing the laws
of celestial mechanics from observations of the planets, deter-
mining economic laws from observing monetary parameters,
or deducing quantum mechanical equations from observations
of atoms, this task is clearly a fundamental part of physics and,
indeed, science in general. The task of identifying dynamical
equations from experimental data also turns out to be closely
related, in both the classical and quantum mechanical cases, to
long-standing open problems in mathematics (in the classical
case, dating back to 1937 [1]).

In this letter, we give complexity-theoretic solutions to both
these open problems. And these results lead to a surprising
conclusion: regardless of how much information one obtains
through measuring a system, extracting the underlying dy-
namical equations from those measurement data is in general
an intractable problem. More precisely, it is NP-hard. This
means that any computationally efficient method of determin-
ing which dynamical equations are consistent with a set of
measurement data would solve the (in)famous P versus NP
problem [2], by implying that P=NP. Thus, if P6=NP, as is
widely believed, there cannot exist an efficient method of de-
ducing dynamical equations from any amount of experimental
data. We also prove the other direction: by reducing to an NP-
complete problem we show that, if P=NP, then there does exist
an efficient algorithm for extracting dynamical equations from
experimental data. Thus the question of whether there exists
an efficient method for determining dynamical equations from
measurement data is equivalent to the P versus NP question.

Note that we are not restricting ourselves here to fundamen-
tal theories, where other theoretical considerations may impose
simplifications on the desired form of the equations. We are
also considering effective dynamical equations, as encountered
in the majority of experiments, where the full range of possible
dynamical equations can in principle be observed.

In the classical setting, the problem of extracting dynamical
models from experimental data has spawned an entire field
known as system identification [3], which forms part of control
engineering – after all, the precise knowledge of the dissipation

is crucial for actually understanding what control steps to apply.
In the quantum case, interest in understanding quantum dy-
namics, especially externally-induced noise and decoherence,
has been spurred on by efforts to develop quantum information
processing technology [4, 5]. Indeed, the primary goal of many
experiments is precisely to characterize and understand the
dynamics of a specific quantum system [6–10]. This is pre-
cisely the task that we show to be computationally intractable
in general (assuming P6=NP), both in quantum mechanics and
in classical physics.

FIG. 1. In an experiment, we can gather snapshots of the state of a
physical system at various points in time. To understand the physics
behind the system’s behavior, we must reconstruct the underlying
dynamical equations from the snapshots.

Results. Let us make the task more concrete. We will
throughout consider open system dynamics which takes exter-
nal influences and noise into account. Recall that in classical
mechanics, the most general state of a system is described
by a probability distribution p over its state space, which for
simplicity we will take to be finite-dimensional. Its evolution is
then described by a master equation, whose form is determined
by the system’s Liouvillian, corresponding to a matrix L, as
ṗ = Lp. The Liouvillian expresses interactions, conservation
laws, external noise etc., in short, it describes the underlying
physics. In order for the probabilities to remain positive and
sum to one, the elements Li,j must obey two simple conditions
[11]: (i) Li6=j ≥ 0, (ii)

∑
i Li,j = 0.

In the quantum setting, the density matrix ρ plays the analo-
gous role to that of the classical probability distribution, but the
quantum master equations are still determined by a Liouvillian:
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ρ̇ = L(ρ). (1)

In his seminal 1976 paper [12], Lindblad established the gen-
eral form that any quantum Liouvillian must take if it is to gen-
erate a completely-positive trace-preserving evolution (so that
density matrices always evolve into density matrices, directly
analogous to probabilities remaining positive and normalised
in the classical case):

L(ρ) = i[ρ,H] +
∑
α,β

Gα,β

(
FαρF

†
β −

1

2
{F †βFα, ρ}+

)
. (2)

Here, H is the Hamiltonian of the system, G is a positive semi-
definite matrix and, along with the matrices Fα, describes
decoherence processes. ([., .] and {., .}+ denote respectively
the commutator and anti-commutator.) These master equations
of Lindblad form have become the mainstay of the dynamical
theory of open quantum systems, and are crucial to the descrip-
tion of quantum mechanics experiments [13]. In principle, the
Liouvillian could itself be time-dependent, describing a system
whose underlying physics is changing over time. Here, we re-
strict our attention to the problem of finding a time-independent
Liouvillian, as this is a good assumption for experiments in
which external parameters are held constant. The more general
time-dependent problem is expected to be harder still.

What is the best possible data that an experimentalist can
conceivably gather about an evolving system? At least in prin-
ciple, they can repeatedly prepare the system in any chosen
initial state, allow it to evolve for some period of time, and
then perform any measurement. In fact, for a careful choice
of initial states and measurements, it is possible in this way
to reconstruct a complete “snapshot” of the dynamics at any
particular time. In the quantum setting, this technique is known
as quantum process tomography [5]. Quantum process tomog-
raphy is now routinely carried out in many different physical
systems, from NMR [6, 7] to trapped ions [8], from photons
[9] to solid-state devices [10].

A tomographic snapshot tells us everything there is to know
about the evolution at the time t when the snapshot was taken.
Each snapshot is a dynamical map Et, which describes how
the initial state, p0 or ρ0, is transformed into p(t) = Et(p0)
or ρ(t) = Et(ρ0). Any measurement at time t can be viewed
as an imperfect version of process tomography, giving par-
tial information about the snapshot, and the outcome of any
measurement of the system at time t can be predicted once Et
is known. Thus the most complete data that can be gathered
about a system’s dynamics consists of a set of snapshots taken
at a sequence of different points in time.

Let us concentrate first on the quantum case. Quantum dy-
namical maps Et are described mathematically by completely
positive, trace-preserving (CPT) maps [5] (also known as quan-
tum channels). The problem of deducing the dynamical equa-
tions from measurement data is then one of finding a Lindblad
master equation (1) that accounts for the CPT snapshots Et.
This is essentially the converse problem to that considered by

Lindblad [12, 14]. Given its relevance, it is not surprising that
numerous heuristic numerical techniques have been applied
to tackle this problem [7, 15]. But unfortunately these give
no guarantee as to whether a correct answer has been found.
Our results show that the failure of these heuristic techniques
is an inevitable consequence of the inherent intractability of
the problem.

Before tackling the problem of finding dynamical equations,
let us start by considering an apparently much simpler question:
given a single snapshot E , does there even exist a Liouvillian
L that could have generated it? Not every CPT map E can
be generated by a Lindblad master equation [16, 17], so the
question of the existence of such a Liouvillian (Eq. (2)) is a
well-posed problem. A dynamical map that is generated by
a Lindblad form Liouvillian is said to be Markovian, so this
problem is sometimes referred to as the Markovianity problem.
Non-Markovian snapshots [18] can arise if the environment
carries a memory of the past, so that the system’s evolution
cannot be described by Eq. (1) in the first place, as that assumes
the system is sufficiently isolated from its environment for its
dynamics to be described independently.

It is important to note that, for the results to apply to real
experimental data, we must take into account the fact that a
snapshot can only ever be measured up to some experimental
error. We should therefore be satisfied if we can answer the
question for some approximation E ′ to the measured snapshot
E , as long as the approximation is accurate up to experimental
error. Mathematically, this is known as a weak membership
formulation of the problem.

To address the Markovianity problem, we will require some
basic concepts from complexity theory. Recall that P is the
class of computational problems that can be solved efficiently
on a classical computer. The class NP instead only requires an
efficient verification of solutions, and contains problems that
are believed to be impossible to solve efficiently, such as the
famous 3SAT problem, and the travelling salesman problem.
A problem is NP-hard if solving it efficiently would also lead
to efficient solutions to all other NP problems. A problem that
is both NP-hard and is also itself in the class NP is said to be
NP-complete. The 3SAT and travelling salesman problems are
both examples of NP-complete problems, whereas the problem
of factoring large integers is an example of an NP problem that
is believed not to be NP-hard [19].

Rather than considering 3SAT, it is more convenient here
to consider the equivalent 1-IN-3SAT problem, into which
3SAT can easily be transformed [19], and which is therefore
also NP-complete. We will show that any instance of the 1-IN-
3SAT problem can be efficiently transformed into an instance
of the Markovianity problem (see also [20]), thus proving that
the latter is at least as hard as 1-IN-3SAT; any efficient proce-
dure for determining whether a snapshot has some underlying
Liouvillian would immediately imply an efficient procedure
for solving 1-IN-3SAT. But 1-IN-3SAT is NP-complete, so
this would immediately give an efficient algorithm for solv-
ing any NP-problem, implying P=NP. However, as discussed
above, the Markovianity problem is just a special case of the
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more general—and more important—problem of extracting
the underlying dynamical equations from experimental data.
If P 6=NP, as is widely believed, then there cannot exist a com-
putationally efficient method of deducing dynamical equations
from any amount of experimental data.

We can go further than this. Through the relation to NP-
complete problems such as 1-IN-3SAT, we can reduce the
Markovianity problem to the task of solving an NP-complete
problem. This gives the first rigorous, provably correct algo-
rithm for extracting the underlying dynamical equations from
a set of experimental data, albeit one that is necessarily inef-
ficient for systems with more than a few degrees of freedom
(otherwise we would have proven P=NP!).

We have focussed so far on the more complex case of quan-
tum systems, and one might perhaps expect that systems gov-
erned by classical physics would be easier to analyse. However,
essentially the same argument proves that exactly the same re-
sults hold for classical systems, too. (See also [20].)

The technical argument. It is convenient to represent a
snapshot E of the dynamics of a quantum system (a CPT map)
by a matrix E,

Ei,j;k,l = Tr
[
E
(
|i〉〈j|

)
· |k〉〈l|

]
(3)

(the row- and column-indices of E are the double-indices i, j
and k, l, respectively). Looked at this way, each measurement
that is performed pins down the values of some of these matrix
elements [5]. A snapshot of a Markovian evolution is then one
with a Liouvillian L (represented in the same way by a matrix
L) such that E = eL, and, for all times t ≥ 0, Et = eLt are
also valid quantum dynamical (CPT) maps.

The Markovianity problem can be transformed into an equiv-
alent question about the Liouvillian. Inverting the relationship
E = eL, we have L = logE. There are, however, infinitely
many possible branches of the logarithm, since the phases of
complex eigenvalues of E are only defined modulo 2πi. The
problem then becomes one of determining whether any one of
these is a valid Liouvillian (i.e. of Lindblad form (2)). This
translates into the following necessary and sufficient conditions
on the matrix L [17]:

(i). LΓ is Hermitian, where Γ is defined by its action on
basis elements: |i, j〉〈k, l|Γ = |i, k〉〈j, l|.

(ii). L fulfils the normalisation 〈ω| L = 0, where |ω〉 =∑
i |i, i〉/

√
d is maximally entangled.

(iii). L satisfies conditional complete positivity (ccp), i.e. (1−
ω)LΓ(1− ω) ≥ 0, ω = |ω〉〈ω|.

All branches Lm of the logarithm can be obtained by adding
integer multiples of 2πi to the eigenvalues of the principle
branch L0, so we can parametrise all the possible branches by
a set of integers mc:

Lm = logE = L0 +
∑
c

mcA
(c), (4)

A(c) = 2πi
(
|lc〉〈rc| −F(|lc〉〈rc|)

)
, (5)

with |lc〉 and 〈rc| the left- and right-eigenvectors of E. F is
the operation F(|i, j〉〈k, l|) = |j, i〉〈l, k|∗, where ∗ denotes
the complex-conjugate, and we have already restricted the
parametrisation to logarithms that satisfy condition (i).

We will prove that this Liouvillian problem is NP-hard, by
showing how to encode any instance of the NP-complete 1-IN-
3SAT problem into it. Recall that the task in 1-IN-3SAT is to
determine whether a given logical expression can be satisfied or
not. The expression is made up of “clauses”, all of which must
be satisfied simultaneously. Each clause involves three boolean
variables (variables with values “true” or “false”), which can
be represented by integers mc = 0, 1. In 1-IN-3SAT, a clause
is satisfied if and only if exactly one of the variables appearing
in the clause is true (as opposed to 3SAT, in which at least
one must be true), and no boolean negation is necessary. Note
that, in terms of integer variables mc, a 1-IN-3SAT clause
containing variables mi, mj and mk can be expressed as

1 ≤ mi +mj +mk ≤ 1, (6a)
0 ≤ mi,mj ,mk ≤ 1. (6b)

If the matrices appearing in conditions (i) to (iii) were di-
agonal, condition (iii) would give us a concise way of writing
the coefficients and constants of a set of inequalities such as
Eqs. (6) in the diagonal elements. However, the problem we
are facing here is significantly more challenging: diagonal ma-
trices will never satisfy conditions (i) and (ii), and the matrices
L0 and A(c) cannot be chosen independently, since they are
determined by the eigenvectors and eigenvalues of a single
matrix E.

These substantial obstacles can be overcome, however. The
key step in encoding the above boolean constraints in a quan-
tum Liouvillian is to restrict our attention to matrices L0 and
A(c) with the following special forms:

L0 = 2π
∑
i,j

Qi,j |i, i〉〈j, j| + 2π
∑
i 6=j

Pi,j |i, j〉〈i, j| , (7)

A(c) = 2π
∑
i 6=j

B
(c)
i,j |i, i〉〈j, j| , (8)

with coefficient matrices

Q =
∑
r

vrv
T
r ⊗

(
1 1
1 1

)
⊗
(
k + λr λr
λr k + λr

)
+
∑
c

vcv
T
c ⊗

(
1 −1
−1 1

)
⊗
(
k − 1

3
1
3 k

)
(9)

+
∑
c′

vc′v
T
c′ ⊗

(
1 −1
−1 1

)
⊗
(
k 0
0 k

)
,

B(c) = vcv
T
c ⊗

(
1 −1
−1 1

)
⊗
(

0 1
−1 0

)
. (10)

The sets of real vectors {vr} and {vc,vc′} should each form
an orthogonal basis, and the parameters k, λr and Pi,j are also
real. The advantage of this restriction is that the action of the
Γ operation on matrices of this form is somewhat easier to
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analyse, as can readily be seen from its definition (given in
condition (i), above).

It is a simple matter to verify that the eigenvalues and eigen-
vectors of L0 and B(c) do indeed parametrise the logarithms
of a matrix E, and that the Hermiticity and normalisation con-
ditions conditions (i) and (ii) necessary for L to be a valid
quantum Liouvillian are indeed satisfied by the forms given in
Eqs. (7) to (10), as long as wTQ = 0 and diag(P )Γ is Hermi-
tian (where for d–dimensional Q, w = (1, 1, . . . , 1)T /

√
d,

and diag(P ) denotes the d2–dimensional matrix with Pi,j
down its main diagonal). Furthermore, the ccp condition condi-
tion (iii) reduces for this special form to the pair of conditions:

∑
c

B
(c)
i,j mc +Qi,j ≥ 0 i 6= j, (11a)(

1−wwT
)

(diagQ+ offdgP )
(
1−wwT

)
≥ 0, (11b)

where M = (diagQ + offdgP ) denotes the d–dimensional
matrix with diagonal elements Mi,i = Qi,i and off-diagonal
elements Mi 6=j = Pi,j .

We now encode the coefficients of the 1-in-3SAT problem
from Eqs. (6) into the elements of vc. For each clause in
Eq. (6a), write a “1” in a new element of vi, vj and vk, and
a “0” in the corresponding element of all other vc’s. For each
vc, write a “1” in a new element of the vector, writing a “0” in
the corresponding element of all the other vc’s (these elements
will be used to restrict each mc to the values 0 or 1). Finally,
extend the vectors so that they are mutually orthogonal and
have the same length, which can always be done. One can now
verify directly that, by choosing appropriate vr, Eqs. (6) are
equivalent to the 1-in-3SAT inequalities of Eq. (11b). Further-
more, conditions (i) and (ii) are always satisfied. (See [20] for
more detail.) Thus we have succeeded in encoding 1-in-3SAT
into the Liouvillian problem. As the latter is equivalent to
the Markovianity problem, this proves that the Markovianity
problem is itself NP-hard. This construction easily generalizes
to the original question of finding which dynamical equations
(if any) could have generated a given set of snapshots [20]:
any method of finding dynamical equations consistent with
the data would obviously also answer the question of whether
these exist, allowing us to solve all NP problems.

Note that, on the positive side, by carrying out a brute-
force search for solutions of the corresponding satisfiability
problem (in the case considered above, this is 1-IN-3SAT,
but more generally it is an integer semi-definite constraint
problem defined by conditions (i) to (iii), which is obviously
in NP), we immediately obtain an algorithm for extracting
dynamical equations from measurement data that is guaranteed
to give the correct answer. Although such an algorithm will
not work in practice even for moderately complex systems,
the NP-hardness proves that we cannot hope for an efficient
algorithm (unless P=NP). And it can be applied to systems
with few degrees of freedom, making it immediately applicable
at least to many current quantum experiments.

What of the classical setting? The classical analogue of
the Markovianity problem is the so-called embedding problem

for stochastic matrices, originally posed in 1937 [1]. Despite
considerable effort [21] the general problem has, however,
remained open until now [22]. Strictly speaking, the quantum
result does not directly imply anything about the classical
problem. Nevertheless, the arguments we have given in the
more complicated quantum setting can straightforwardly be
adapted to the classical embedding problem [20], proving that
this is NP-hard, too. (See [20] for details.)

Discussion. On the one hand, this work leads to a rigorous
algorithm for extracting the underlying dynamical equations
from experimental data. For systems with few effective degrees
of freedom, as encountered for example in all quantum tomog-
raphy experiments to date [6–10], this gives the first practical
and provably correct algorithm for this key task. For systems
with many degrees of freedom, the algorithm is necessarily
inefficient, with a run-time that scales exponentially. But our
complexity-theoretic NP-hardness results show that we cannot
hope for a polynomial-time algorithm. Note also that the hard-
ness cannot be attributed to allowing high-energy processes
in the dynamics (high branches of the logarithm), as the re-
duction from the 1-IN-3SAT problem only needs low-energy
dynamics (m is restricted to 0 or 1).

On the other hand, our results also prove that for general
systems, deducing the underlying dynamical equations from
experimental data is computationally intractable, unless one
can show that P=NP. This hardness result is true whether
the system is quantum or classical, and regardless of how
much experimental data we gather about the system. These
results also imply that various closely related problems, such
as finding the dynamical equation that best approximates the
data, or testing a dynamical model against experimental data,
are also intractable in general, as any method of solving these
problems could easily be used to solve the original problem.

Experience would seem to suggest that, whilst general clas-
sical and quantum dynamical equations may be impossible
to deduce from experimental data, the dynamics that we ac-
tually encounter are typically much easier to analyse. Our
results pose the interesting question of why this should be, and
whether there is some general physical principle that rules out
intractable dynamics.
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