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Abstract

The zero-error capacity of a channel is the rate at which it can
send information perfectly, with zero probability of error, and has long
been studied in classical information theory. We show that the zero-
error capacity of quantum channels exhibits an extreme form of non-
additivity, one which is not possible for classical channels, or even for
the usual capacities of quantum channels. By combining probabilistic
arguments with algebraic geometry, we prove that there exist channels
E1 and E2 with no zero-error classical capacity whatsoever, C0(E1) =
C0(E2) = 0, but whose joint zero-error quantum capacity is positive,
Q0(E1 ⊗ E2) ≥ 1. We term this striking effect super-duper-activation,
as it implies that both the classical and quantum zero-error capacities
of these channels can be superactivated simultaneously, whilst being a
strictly stronger property of capacities. Superactivation of the quantum
zero-error capacity was not previously known.
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1 Introduction
The zero-error capacity, introduced by Shannon in 1956, characterises the
optimal achievable communication rate of a noisy channel when information
must be transmitted with zero probability of error [1]. This is in contrast
with the more traditional capacity, which only demands error probabilities
vanishing in the limit of many channel uses. The question of zero-error
capacity (and more generally zero-error information theory [2]) has a much
more combinatorial flavor than the usual case, and has played an important
role in the development of graph theory. Combinatorial optimisation problems
are often intractable so, perhaps unsurprisingly, the zero-error capacity is
unknown even for many very simple channels.

Quantum information theory seeks to extend information theory to include
information sources and communication systems where quantum effects are
important. Because all physical systems are fundamentally quantum, this
can be seen as an attempt to more accurately model physical information
processing systems. Furthermore, expanding our notion of information to
include quantum messages leads to new insights and applications, such as
quantum cryptography and quantum computing. Because quantum systems
are notoriously delicate, error correction is extremely important, and the
capacities of a noisy quantum channel for transmitting various types of
information noiselessly play a central role in the theory. In the context of
zero-error quantum information theory, first studied in Ref. [3], the central
capacities are the zero-error classical and zero-error quantum capacities.

A rather surprising effect has recently been discovered in the theory of
quantum communication. Classically, there is a simple criterion for deciding
whether a channel has non-zero capacity—any channel with some correlation
between input and output has some positive capacity—and this criterion
carries over to the classical capacity of quantum channels. However, when
sending quantum information, the situation is very different. There are some
quantum channels that are sufficiently noisy to have zero capacity for quantum
communications, yet can still create correlations. In Ref. [4] it was shown
that there are pairs of channels with very different noise characteristics, but
both with zero quantum capacity, that, when used together, have a large joint
quantum capacity. This superactivation is completely different from what
happens in the classical case, and depends crucially on choosing entangled
signal states for the joint channel.

Superactivation of classical channel capacities is easily seen to be impossi-
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ble, both for the usual capacity and the zero-error capacity. If two classical
channels have no correlation between input and output, so that their usual
classical capacity vanishes, this will also hold for the joint channel. Similarly,
if two classical channels each have the property that all pairs of inputs can
lead to ambiguous outputs, so that the zero-error capacity vanishes, then
the joint channel necessarily has this property too. The argument for the
usual classical capacity carries over directly to the case of quantum chan-
nels: superactivation of the classical capacity of a quantum channel remains
impossible.

However, in Ref. [5] it was shown that the zero-error classical capacity of
a quantum channel actually can be superactivated (see also Ref. [6], which
found superactivation of the non-asymptotic one-shot zero-error classical
capacity, and a weaker form of activation in the asymptotic setting). In
this paper, we significantly strengthen the results and techniques of Ref. [5].
There, techniques from algebraic geometry were combined with probabilistic
arguments to show that there are pairs of channels, each with vanishing zero-
error classical capacity, that have positive joint zero-error classical capacity
when used together. Here, we find that there exist pairs of channels which
each have vanishing zero-error classical capacity, as before, but when the
two channels are used together they can even transmit quantum information
with zero-error (indeed, only a single use of the joint channel is required).
This is the strongest possible form of superactivation (which we therefore call
super-duper-activation). It implies simultaneous superactivation of both the
classical (already known from Ref. [5]) and quantum (previously unknown)
zero-error capacities of quantum channels, whilst being strictly stronger than
either of these.

The rest of the paper is organised as follows. In the next section we
review some basic facts about quantum mechanics and algebraic geometry.
Section 3 establishes sufficient conditions for super-duper-activation, whilst
Section 4 shows that there exist channels which satisfy these conditions.
Finally, Section 5 discusses the implications of our findings.

2 Preliminaries
2.1 Quantum Mechanics

A minimum uncertainty state of a d-level quantum system is a pure state,
represented by a d-dimensional complex unit vector |ψ〉 ∈ Cd. More generally,
the state of a d-level system is given by a density matrix, ρ ∈ B(Cd), where,
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B(Cd) denotes the set of bounded linear operators on Cd. Such a density
matrix is Hermitian (ρ = ρ†) and has unit trace: Tr ρ = 1. As a result, any
such ρ admits a spectral decomposition ρ =

∑
i pi |ψi〉〈ψi| with orthogonal

|ψi〉, which can be interpreted as describing a system that is in state |ψi〉 with
probability pi. Whilst we will not need to consider measurement processes
below, we will need to know when there is some measurement to distinguish
two states. This is possible exactly when the states are orthogonal: for pure
states 〈ψ|φ〉= 0 or for mixed states Tr ρ σ = 0.

It is sometimes useful to consider (unnormalised) pure states |ψ〉AB in a
bipartite space CdA⊗CdB as matrices M = M(|ψ〉AB) in the isomorphic space
of dA×dB matricesMdA,dB

. The isomorphism arises from fixing some product
basis |i〉A |j〉B for CdA ⊗CdB , and expanding |ψ〉AB =

∑
i,jMij |i〉A |j〉B in this

basis. A bipartite subspace S ⊆ CdA ⊗CdB is isomorphic in this way to a
matrix subspace which we denote M(S).

We define the “flip” operation on a bipartite state as the operation that
swaps the two systems and takes the complex conjugate:

F(|ψ〉AB) = SWAP(|ψ̄〉AB). (1)

In terms of the matrix representation M = M(|ψ〉AB), the flip operation is
just Hermitian conjugation: M(F |ψ〉AB) = M †. The flip operation can be
extended to operators and subspaces in the obvious way.

The most general physical operation in quantum mechanics is a completely
positive trace preserving (CPT) map from B(Cdin) to B(Cdout), where din and
dout are the input and output dimensions of the map. We will refer to such
operations as quantum channels throughout, as they are directly analogous
to channels in classical information theory. A quantum channel that maps a
space A to B can always be thought of as an isometry followed by a partial
trace. In other words, for any channel E we have E(ρ) = TrEUρU

†, where
U : A→ BE is an isometry satisfying U †U = IA. Equivalently, the action of
a channel can be expressed in terms of Kraus operators: N (ρ) =

∑
k AkρA

†
k,

where
∑

k A
†
kAk = IA. A third representation of quantum channels (indeed,

it extends to any linear map), which plays an important role in Ref. [5], is the
Choi-Jamio lkowski matrix, defined to be the result of applying the channel
to one half of an unnormalised maximally entangled state. In other words,
the Choi-Jamio lkowski matrix of a channel E is given by σ = (I ⊗ E)(ω)
where ω =

∑dA

i=1 |i〉 |i〉. The action of the channel can be recovered from the
Choi-Jamio lkowski matrix via E(ρ) = TrA[σAB · ρTA ⊗ 1B] (where ρTA denotes
the transpose of the density matrix ρA).
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We will also need the ∗–conjugate E∗ of a channel E , which is simply the
dual with respect to the Hilbert-Schmidt inner product, i.e. the unique map
defined by:

Tr[X† E(Y )] = Tr[ E∗(X)† Y ]. (2)

In terms of Kraus operators Ak, the ∗–conjugate is the channel whose Kraus
operators are the Hermitian conjugates A†k.

2.2 Algebraic Geometry

In order to prove our results, we need some basic notions from algebraic
geometry (see e.g. Ref. [7]). A key concept is that of a Zariski-closed set, and
the resulting Zariski topology. We will only ever work over base fields C or
R, so for our purposes Zariski-closed sets are sets defined by a collection of
polynomial equations, i.e. they are the solution sets of simultaneous polyno-
mial equations. We will use the terms Zariski-closed set and algebraic set
interchangeably.

The Zariski topology is the topology whose closed sets are the Zariski-
closed sets. It is the standard topology in algebraic geometry, but it serves
more as a convenient terminology than providing any useful geometric in-
formation. The main use we will make of it is the fact that intersections of
Zariski-closed sets are themselves Zariski-closed. Indeed, the only Zariski-
closed set that has non-zero measure (in the usual sense on Cd or Rd) is the
entire space. This “Zariski dichotomy”—that a Zariski-closed set is either
zero-measure or the entire space—lies at the heart of our proofs.

We will also frequently refer to the Grassmannian Grd(V ) of a vector
space V : the set of all d-dimensional subspaces of V . There is a standard
way of embedding the Grassmannian in projective space, called the Plücker
embedding and conventionally denoted ι. If a d-dimensional subspace in
the Grassmannian is spanned by some basis {|ψi〉}, then ι(S) is defined to
be ∧di=1 |ψi〉, with ∧ denoting the anti-symmetric product. This is uniquely

defined, since picking some other basis replaces |ψi〉 by
∑d

j=1Ai,j |ψj〉 for some
invertible matrix A, which in turn replaces ι(S) by det(A)ι(S). In projective
space, rescaling by the scalar det(A) makes no difference.

Via the Plücker embedding, points in the Grassmannian are naturally
parametrised by the coordinates of points in projective space, called the
Plücker coordinates. (Note that not all points in the ambient projective
space correspond to points in the Grassmannian; the Plücker coordinates
of points within the Grassmannian must satisfy quadratic constraints called
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the Plücker relations.) Thus the Plücker coordinates Pαd
of S are defined by∑

αd
Pαd

(∧j∈αd
|j〉) = ∧di=1 |ψi〉, where αd are size d subsets of {1 . . . n}, with

|1〉 , . . . , |n〉 a basis of V .

3 Sufficient Conditions for

Super-Duper-Activation
We start by reducing the problem of proving existence of super-duper-
activation to a question about the existence of subspaces satisfying certain
conditions. The arguments are very similar to those leading to Theorem 13
of Ref. [5], but the stronger requirement that the joint channel have positive
quantum zero-error capacity adds an additional constrain on the subspaces.
To derive this new constraint, we need the following lemma, which gives us a
sufficient condition for a channel to have positive zero-error quantum capacity.

Lemma 1 Let E : A → B be a channel, |0〉 and |1〉 be states on A, and
|±〉= 1/

√
2(|0〉± |1〉). Then, if

Tr [E(|0〉〈0|) E(|1〉〈1|)] = 0 (3)

and
Tr [E(|+〉〈+|) E(|−〉〈−|)] = 0, (4)

we have Q0(E) ≥ 1.

Proof To see this, suppose Ak are the Kraus operators of E and ϕ = 1
2
(|0〉〈0|+

|1〉〈1|), and let

Rϕ(ρ) =
∑
k

√
ϕA†kE(ϕ)−1/2ρ E(ϕ)−1/2Ak

√
ϕ (5)

be the reversal operation of Ref. [8]. This is completely positive and trace
preserving by design, and M := Rϕ ◦ E is the identity on span(|0〉 , |1〉). To
see this, first note that, by assumption,

0 = Tr [E(|0〉〈0|)E(|1〉〈1|)] (6a)

=
∑
j,k

Tr
[
Aj |0〉〈0|A†jAk |1〉〈1|A

†
k

]
(6b)

=
∑
j,k

∣∣∣〈0|A†jAk |1〉∣∣∣2 , (6c)
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so that 〈0|A†jAk |1〉 = 0 for all j, k, and similarly for 〈+|A†jAk |−〉. Now
consider

Tr
[√

ϕA†kE(ϕ)−1/2E(|0〉〈0|)E(ϕ)−1/2Ak
√
ϕ |1〉〈1|

]
(7a)

=
1

2
Tr
[
A†kE(ϕ)−1/2E(|0〉〈0|)E(ϕ)−1/2Ak |1〉〈1|

]
(7b)

=
1

2
Tr
[
E(ϕ)−1/2E(|0〉〈0|)E(ϕ)−1/2E(|1〉〈1|)

]
. (7c)

Since E(|0〉〈0|) and E(|1〉〈1|) are orthogonal, we have

E(ϕ)−1/2 =
√

2E(|0〉〈0|)−1/2 +
√

2E(|1〉〈1|)−1/2, (8)

which immediately implies with the above that

M(|0〉〈0|) = |0〉〈0| (9a)

M(|1〉〈1|) = |1〉〈1| . (9b)

Similarly, we also have

M(|+〉〈+|) = |+〉〈+| (10a)

M(|−〉〈−|) = |−〉〈−| . (10b)

Now all we have to do is show that any CPT map M satisfying the above
four equations must be the identity. We can easily use these four equations
to show that

M(1) = 1 (11a)

M(X) = X (11b)

M(Z) = Z, (11c)

which also implies that M(Y ) = λY , where X = ( 0 1
1 0 ), Y =

(
0 −i
i 0

)
and

Z =
(

1 0
0 −1

)
. All we have to do now is show that for any such map to be CP

we need λ = 1. This is easily confirmed by considering the action of M on
|φd〉= 1√

2
(|00〉+ |11〉). �

We are now in a position to reduce the super-duper-activation problem to
a question about subspaces. The following theorem is a lot like Theorem 13
in Ref. [5].
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Theorem 2 Suppose there is a subspace S such that

∀k, @ |ψ〉 , |ϕ〉 ∈ H⊗kA : |ψ〉⊗ |ϕ〉 ∈ (S⊗k)⊥, (12a)

∀k, @ |ψ〉 , |ϕ〉 ∈ H⊗kA : |ψ〉⊗ |ϕ〉 ∈
(
(S⊥)⊗k

)⊥
, (12b)

F(S) = S , (12c)

F(1⊗X · S) = 1⊗X · S, (12d)

∃{Mi ≥ 0} : M(S) = span{Mi}, (12e)

∃{Mj ≥ 0} : M(1⊗X · S⊥) = span{Mj}, (12f)

S ⊥ (1+X)⊗ (1−X)S⊥. (12g)

Then there exist channels E1,2 with C0(E1) = C0(E2) = 0 but Q0(E1 ⊗ E2) ≥ 1.

Proof Equations (12a)–(12f) are identical to the conditions in Theorem 13
of Ref. [5], and are derived in exactly the same way. Only Eq. (12g) is new,
so we will focus on that. Recall from Ref. [5] that S will be the support
of σ1 = (I ⊗ E∗1 ◦ E1)(|ω〉〈ω|) with |ω〉 =

∑
i |i〉 |i〉 and S2 = (1 ⊗ X)S⊥

the support of σT2 defined similarly. The two signal states for E1 ⊗ E2 are
|ϕ0〉= |φd〉 and |ϕ1〉= (1⊗X) |φd〉. What we have to do now is show that,
letting |ϕ±〉= (|ϕ0〉± |ϕ1〉)/

√
2, we have

Tr [(E1 ⊗ E2)(|ϕ+〉〈ϕ+|)(E1 ⊗ E2)(|ϕ−〉〈ϕ−|)] = 0. (13)

Now,

Tr
[
(E1 ⊗ E2)(|ϕ+〉〈ϕ+|)(E1 ⊗ E2)(|ϕ−〉〈ϕ−|)

]
(14a)

= Tr
[
(E∗1 ◦ E1 ⊗ E∗2 ◦ E2)(|ϕ+〉〈ϕ+|) |ϕ−〉〈ϕ−|

]
(14b)

= Tr
[
σ
A′1A1

1 ⊗ σA
′
2A2

2 |ϕ+〉〈ϕ+|TA′1A′2 ⊗ |ϕ−〉〈ϕ−|A1A2

]
(14c)

= Tr

[
σ
A′1A1

1 ⊗ σA
′
2A2

2

(
P+ ⊗ 1 |ω〉〈ω|A′1A′2 P+ ⊗ 1

)
⊗(

P− ⊗ 1 |ω〉〈ω|A1A2
P− ⊗ 1

)] (14d)

= Tr
[
(P+ ⊗ P−)σ

A′1A1

1 (P+ ⊗ P−)⊗ σA
′
2A2

2 |ω〉〈ω|A′1A′2 ⊗ |ω〉〈ω|A1A2

]
(14e)

= Tr
[
[(P+ ⊗ P−)σ2(P+ ⊗ P−)]T σ1

]
(14f)
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where P± = (1 ± X)/2 are projectors and we have used the fact that
Tr[|ω〉〈ω|M ⊗N ] = Tr[NTM ]. As a result, the requirement Eq. (13) is met
by choosing S ⊥ (P+⊗P−)S2. This is equivalent to S ⊥ (1+X)⊗ (1−X)S⊥,
since P−X = −P− and we chose S2 = (1⊗X)S⊥. �

4 Existence of Super-Duper-Activation
Given Theorem 2, all we need to do in order to show the super-duper-activation
phenomenon is to prove that there do exist subspaces satisfying the conditions
of the theorem. We use a combination of algebraic-geometry and probabilistic
arguments to establish this result.

In what follows, we will need to consider a number of sets of subspaces.
Recall the definition of extendibility from Refs. [5, 9]:

Definition 3 A subspace S ∈ HA⊗HB is k-unextendible if (S⊗k)⊥ contains
no product state in HA⊗k ⊗HB⊗k . A subspace is strongly unextendible if it
is k-unextendible for all k ≥ 1. Conversely, a subspace is k-extendible if it is
not k-unextendible, and extendible if it is not strongly unextendible.

Following Ref. [5], we denote the sets of d-dimensional k-extendible, extendible,
and unextendible subspaces, respectively, by

Ek
d (HA,HB) = {S ∈ Grd(HA ⊗HB)|S is k-extendible}, (15)

Ed(HA,HB) = {S ∈ Grd(HA ⊗HB)|S is extendible}, (16)

Ud(HA,HB) = {S ∈ Grd(HA ⊗HB)|S is unextendible}, (17)

Lemma 15 of Ref. [5] proves that Ek
d is Zariski-closed in Grd(HA ⊗HB) =

Grd(C
dA ⊗CdA).

We will also refer to the set

Fd(R, dA) = {S ∈ Gr2d(R
2 ⊗RdA ⊗RdA) |

S = iS,F(S) = S, F(1⊗X · S) = 1⊗X · S} (18)

of subspaces satisfying the symmetry constraints of Eqs. (12c) and (12d). Note
that we are considering Fd as a subset of the real Grassmannian, in which
context i =

(
0 −1
1 0

)
. Lemma 17 of Ref. [5] proves that Fd is Zariski-closed in

Gr2d(R
2 ⊗RdA ⊗RdA).

In order to extend the arguments of Ref. [5] to our case, we will need to
consider an additional set: the set of subspaces satisfying the orthogonality
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constraint of Eq. (12g):

Cd(C, dA) = {S ∈ Grd(C
dA ⊗CdA)|S ⊥ (1+X)⊗ (1−X)S⊥}, (19)

and also the isomorphic set of real vector spaces:

Cd(R, dA) = {S ∈ Gr2d(R
2⊗RdA⊗RdA)|S = iS, S ⊥ (1+X)⊗(1−X)S⊥}.

(20)

The first step is to show that this set is algebraic (cf. Lemma 17 of Ref. [5]).

Lemma 4 Cd(C, dA) is Zariski-closed in Grd(C
dA ⊗CdA).

Proof First, we let W = ∧di=1 |ψi〉 for some basis {|ψi〉} of S. We have |ψ〉 ∈ S
exactly when |ψ〉 ∧W = 0 and we want to use this to construct a basis for
S⊥. If Pαd

are the Plücker coordinates of S, and supposing |ψ〉=
∑n

i=1 vi |i〉,
then |ψ〉 is in S exactly when

|ψ〉 ∧W =
∑
αd

∑
i

viPαd
|i〉 ∧ (∧j∈αd

|j〉) (21a)

=
∑
i,βd+1

viNi,βd+1
∧k∈βd+1

|k〉= 0, (21b)

so that we have an N such that |ψ〉 ∈ S iff 〈ψ|N = 0. Now, the support of
NN † is S⊥ and its eigenvalues are positive. Most importantly, we can think
of NN † as a matrix with entries that are quadratic polynomials in Pαd

. Thus,
we are interested in ensuring that

N · P+ ⊗ P− |ψ〉= 0 (22)

for all |ψ〉 ∈ S, which is equivalent to showing that

N⊗n(P+ ⊗ P−)⊗nι(S) = 0. (23)

This is a linear constraint on ι(S), so {ι(S) : N⊗n(P+ ⊗ P−)⊗nι(S) = 0}
is Zariski-closed. Since ι is a proper morphism (cf. Lemma 17 of Ref. [5]),
Cd = {S : ∀ |ψ〉 ∈ S,N · P+ ⊗ P− |ψ〉= 0} must also be Zariski-closed. �

Any Zariski-closed set in a complex vector space is also Zariski-closed
in the isomorphic real vector space. Furthermore, the intersection of two
Zariski-closed sets is again Zariski-closed. This immediately gives:
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Corollary 5 Ek
d (HA,HA′) ∩ Fd(R, dA) ∩ Cd(R, dA) is Zariski-closed in

Fd(R, dA) ∩ Cd(R, dA).

We can now use the “Zariski dichotomy” to prove that the set of strongly
unextendible subspaces is full measure in Fd ∩ Cd.

Lemma 6 For d ≥ 12(dA+dB−1), the set of strongly unextendible subspaces
Ud(HA,HA′)∩Fd(C, dA)∩Cd(C, dA) is full measure in Fd(C, dA)∩Cd(C, dA).

Proof Since Ek
d (HA,HA′)∩Fd(R, dA)∩Cd(R, dA) is Zariski-closed by Corol-

lary 5,
⋃
k E

k
d (HA,HA′)∩Fd(R, dA)∩Cd(R, dA) is a countable union of Zariski-

closed sets, so it is either zero measure (in the usual Haar measure) in
Fd(R, dA) ∩ Cd(R, dA), or it is the full space. Conversely, its complement
Ud(HA,HA′) ∩ Fd(R, dA) ∩ Cd(R, dA) is either full measure or empty.

To rule out the possibility that it is empty, we prove that there exists
a subspace in Ud ∩ Fd ∩ Cd by constructing one using unextendible product
bases (UPBs). Lemma 22 of Ref. [5] proves that the span of a UPB is a
strongly unextendible subspace, and Ref. [10] showed that UPBs of dimension
m exist in CdA ⊗CdB for any m ≥ dA + dB − 1. Let S be a subspace spanned
by such a minimal UPB, and let the set of matrices {Mi} be a basis for M(S).
Consider the symmetrised subspace M(S ′) spanned by{

M, XMX, M †, XM †X,

P+MP−, P+XMXP−, P+M
†P−, P+XM

†XP−,

P−MP+, P−XMXP+, P−M
†P+, P−XM

†XP+

}
.

(24)

The resulting subspace S ′ has dimension at most 12(dA + dB − 1), and
satisfies both the symmetry and orthogonality constraints of Eqs. (12c), (12d)
and (12g) from Theorem 2. Thus S ′ ∈ Fd ∩ Cd. As S ⊆ S ′, S ′ is clearly
strongly unextendible, which completes the proof. �

Corollary 7 For dA ≥ 48, and for a subspace S ∈ CdA ⊗CdA of dimension
12(2dA−1) ≤ d ≤ d2

A−12(2dA−1) chosen uniformly at random subject to the
constraints F(S) = S, F(1⊗X ·S) = 1⊗X ·S and S ⊥ (1+X)⊗ (1−X)S⊥,
both S and S⊥ will almost-surely be strongly unextendible.

Proof Lemma 6 implies that S chosen in this way will almost-surely be
strongly unextendible. But S⊥ is then a random subspace subject to the same
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constraints, with dimension 12(2dA − 1) ≤ d⊥ = d2
A − d ≤ d2

A − 12(2dA − 1).
Thus Lemma 6 implies that S⊥ will also be almost-surely strongly unextendible.
For there to exist a suitable d, we require 12(2dA − 1) ≤ d2

A − 12(2dA − 1), or
dA ≥ 48. �

Corollary 5 tells us that, although Eqs. (12a) and (12b) of Theorem 2
would appear to impose severe constraints on the subspace S, they are in
fact benign. Even if we restrict to subspaces satisfying Eqs. (12c), (12d)
and (12g), a randomly chosen subspace will satisfy Eqs. (12a) and (12b) with
probability 1.

It remains to show that such a subspace can also satisfy Eqs. (12e) and (12f).
For this, we require more information about the structure of the set Fd ∩ Cd
of subspaces that simultaneously satisfy Eqs. (12c), (12d) and (12g).

Lemma 8 If dA is even, then

Fd(R, dA) ∩ Cd(R, dA)

∼=
min[d,

d2
A
2

]⊕
r=max[0,d−

d2
A
2

]

r⊕
k1=0

d−r⊕
k2=0

(
Grk1(R

d2A/2)×Grr−k1(R
d2A/2)×

Grk2(R
d2A/2)×Grd−r−k2(R

d2A/2)
)
.

(25)

In other words, an element of Fd(R, dA)∩Cd(R, dA) can be uniquely identified
by specifying non-negative integers r, k1 and k2 satisfying d− d2

A/2 ≤ r ≤ d,
k1 ≤ r and k2 ≤ d − r, along with elements of Grk1(R

d2A/2), Grr−k1(R
d2A/2),

Grk2(R
d2A/2) and Grd−r−k2(R

d2A/2).

Proof Elements of Fd(R, dA) ∩ Cd(R, dA) are 2d-dimensional real subspaces
of R2 ⊗RdA ⊗RdA . As such, they can be expressed as rank-2d projectors.
In terms of these projectors Π, the constraints in Eq. (18) defining Fd(R, dA)
become iΠ iT = Π, F Π FT = Π and (X ⊗X)Π(X ⊗X) = Π (cf. Lemma 28
of Ref. [5]).

The additional constraint S ⊥ (P+⊗P−)S⊥ in Eq. (20) defining Cd(R, dA)
can also be expressed as a symmetry of Π. Note that this constraint is
symmetric: if S satisfies it, then so does S⊥. (To see this, express the
constraint as

∀ |ψ〉 ∈ S⊥, |ϕ〉 ∈ S : 〈ϕ|P+ ⊗ P− |ψ〉 = 0 (26)
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and take the complex conjugate.) If Π is the projector corresponding to a
subspace S, the constraint is equivalent to

Π(P+ ⊗ P−)Π = (P+ ⊗ P−)Π. (27)

and we know the same holds for S⊥:

(1− Π)P (1− Π) = P (1− Π), (28)

or, equivalently,
Π(P+ ⊗ P−)Π = Π(P+ ⊗ P−). (29)

Together, Eqs. (27) and (29) imply that if Eq. (27) is satisfied then Π and
P+ ⊗ P− commute. Conversely, it is easy to see that Eq. (27) is satisfied if Π
commutes with P+⊗P−. Thus the subspace S is in Cd(R, dA) iff Π commutes
with (P+ ⊗ P−) = (1+X)⊗ (1−X) and iΠ iT = Π.

We will first consider the P+ ⊗ P− and F symmetries. Since Π commutes
with P+ ⊗ P−, it must be of the form Π = ΠP+− + Π⊥P+−

where ΠP+− is a

projector onto a subspace in the support of P+⊗P−, and Π⊥P+−
is a projector

onto a subspace in the orthogonal complement thereof. Note that, as we are
working in the real vector space, P+ ⊗ P− is rank d2

A/2. Now, F exchanges
P+ ⊗ P− with P− ⊗ P+, so F Π FT = ΠP−+ + Π⊥P−+

, where ΠP−+ (Π⊥P−+
) is

a projector onto a subspace in the (orthogonal complement of the) support
of P− ⊗ P+. But F Π FT = Π, so ΠP−+ must commute with Π⊥P+−

and,

furthermore, ΠP−+ = F ΠP+−FT . Thus

Π = (ΠP+− + F ΠP+−FT ) + Π⊥, (30)

where Π⊥ is a projector onto a subspace in the support of 1 − (P+ ⊗ P− +
P− ⊗ P+) that satisfies F Π⊥ FT = Π⊥. Let r ≤ d denote the rank of ΠP+− .
Since P+ ⊗ P− has d2

A/2 dimensional support, r cannot be larger than this.
Also, as Π has rank 2d, Π⊥ has rank 2(d − r). But Π⊥ must live in the
support of 1− (P+ ⊗ P− + P− ⊗ P+) which has dimension d2

A, so we require
2(d− r) ≤ d2

A. Thus r is constrained to take values in the range

max
[
0, d− d2

A/2
]
≤ r ≤ min

[
d, d2

A/2
]
. (31)

Now consider the i and F symmetries. Since P+ ⊗ P− + P− ⊗ P+ is
invariant under both these operations, ΠP+− + F ΠP+−FT and Π⊥ must satisfy
these symmetries independently. We first focus on Π⊥. Let F± denote the

13



±1 eigenspaces of F. Since Π⊥ commutes with F, it must be the sum of a
projector onto a subspace of F+ and a projector onto a subspace of F−. In
other words, Π⊥ = Π⊥+ + Π⊥− where Π± F = F Π± = ±Π±. Since i and F
anti-commute, i must map F± to F∓. Thus iΠ⊥±i

T is a projector onto F∓.
Combined with the fact that iΠ⊥iT = Π⊥ we obtain iΠ⊥±i

T = Π⊥∓. We can
thus assume that

Π⊥ = Π⊥+ + iΠ⊥+i
T (32)

where Π⊥+ is a projector onto F+ within the support of 1−(P+⊗P−+P−⊗P+).
Since Π⊥ has rank 2(d− r), Π⊥+ must have rank d− r.

Turning now to ΠP+− + F ΠP+−FT , this already commutes with F, so we
must be able to rewrite it as ΠP+− + F ΠP+−FT = Π+ + Π− where Π± are
projectors onto F± within the support of P+ ⊗ P− + P− ⊗ P+. By the same
argument as before, the i symmetry imposes Π− = iΠ+i

T , so

ΠP+− + F ΠP+−FT = Π+ + iΠ+i
T . (33)

Since ΠP+− + F ΠP+−FT has rank 2r, Π+ must have rank r.
Finally, consider the X ⊗X symmetry. Since X ⊗X commutes with F

and P+− ⊗ P−+, we have that Π+ and Π⊥+ must also commute with X ⊗X.
This means we can write Π+ as Π++ + Π+− and Π⊥+ as Π⊥++ + Π⊥+−, where
Π+±,Π

⊥
+± are projectors onto subspaces of the ±1 eigenspace of X⊗X. Since

Π+ has rank r, the ranks of Π++ and Π+− must sum to r. Similarly, Π⊥+ has
rank d− r, so the ranks of Π⊥++ and Π⊥+− must sum to d− r. Thus we have
finally that

Π = Π++ + Π+− + Π⊥++ + Π⊥+− + i(Π++ + Π+− + Π⊥++ + Π⊥+−)iT . (34)

Conversely, if Π++, Π+−, Π⊥++ and Π⊥+− are arbitrary projectors with the
appropriate supports and with ranks summing to r and d− r, respectively,
then a Π of the above form projects onto a subspace in Fd(R, dA)∩Cd(R, dA).
For each value of r satisfying Eq. (31), if Π++ and Π⊥++ have ranks k1 and k2,

then our choice of Π is equivalent to choosing an element of Grk1(R
d2A/2)×

Grr−k1(R
d2A/2)×Grk2(R

d2A/2)×Grd−r−k2(R
d2A/2). �

This structure lemma allows us to deal with the remaining conditions of
Theorem 2, namely Eqs. (12e) and (12f), using probabilistic arguments.
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Theorem 9 If dA is even, and bd/2c ≤ d2
A/2− 2, then the set

Pd(dA) = {S ∈Fd(C, dA) ∩ Cd(C, dA)

| ∃M ∈M(S),M ′ ∈M(1⊗X · S⊥) : M,M ′ ≥ 0}
(35)

has non-zero measure in Fd(C, dA) ∩ Cd(C, dA).

Proof Since dim Grk(R
d2A/2) = (d2

A/2− k)k, we have

dim
(

Grk1(R
d2A/2)×Grr−k1(R

d2A/2)×Grk2(R
d2A/2)×Grd−r−k2(R

d2A/2)
)

=

(
d2
A

2
− k1

)
k1

(
d2
A

2
− r + k1

)
(r − k1) ·(

d2
A

2
− k2

)
k2

(
d2
A

2
− d+ r + k1

)
(d− r − k2).

(36)

which takes its maximum value at r = d/2, k1 = k2 = d/4 for d a multiple of 4,
or the closest integers to this otherwise. This means that all but a measure-zero
subset of Fd(C, dA)∩Cd(C, dA) is contained in the component associated with
these values of r, k1 and k2. Indeed, if d is a multiple of 4 then the component
of Fd(C, dA) ∩ Cd(C, dA) corresponding to Grd/4(R

d2A/2) × Grd/4(R
d2A/2) ×

Grd/4(R
d2A/2) × Grd/4(R

d2A/2) has measure 1 in Fd(C, dA). Otherwise, the
components corresponding to the closest integers to r = d/2, k1 = k2 = d/4
together have total measure 1, with the measure split equally between them.
For the remainder of the proof we will take r = d/2, k1 = k2 = d/4 (d
divisible by 4) or any set of closest integers to these. Let Kd(C, dA) denote
the corresponding part of F (C, dA) ∩ Cd(C, dA).

It suffices to show that Pd(dA) ∩ Kd(C, dA) has positive measure in
Kd(C, dA). To do so, we first construct a subspace S ∈ Kd(C, dA) that
contains a positive-definite element (i.e. M > 0 for some M ∈M(S)), such
that (1⊗X) · S⊥ also contains a positive-definite element. This will guar-
antee that every S ′ ∈ Kd(C, dA) that is sufficiently close to S will belong to
Pd(dA)∩Kd(C, dA), implying that this set has non-zero measure and proving
the theorem.

To construct the desired S, note that for S to be positive definite it is
sufficient for M(S) to contain a single positive-definite element. In particular,
we will choose S to contain |ω〉 =

∑dA

i=1 |i, i〉. We will also require that S
be orthogonal to (1 ⊗ X) |ω〉 so that (1 ⊗ X)S⊥ also contains |ω〉 and is
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positive definite. (Note that this only works if dA is even, otherwise |ω〉 and
(1⊗X) |ω〉 are not orthogonal.)

P± ⊗ P∓ |ω〉= P± ⊗ P∓(1⊗X) |ω〉= 0, so both |ω〉 and (1⊗X) |ω〉 are
contained in the support of 1− (P+⊗P−+P−⊗P+). They also both belong
to the +1 eigenspace of X ⊗X. Thus to choose S we need only choose an
additional k2 − 1 dimensions for Π⊥++ (from a space of dimension d2/4− 1)
as well as an arbitrary rank-(d − r − k2) projector Π⊥+− whose support is
contained within the portion of the −1 eigenspace of X ⊗X orthogonal to
Π±⊗P∓ (also of dimension d2

A/4), and arbitrary rank-k1 and r−k1 projectors
Π++ and Π+−. This is possible as long as k2 ≤ d2

A/4, d − r − k2 ≤ d2
A/4,

k1 ≤ d2
A/4 and r − k1 ≤ s2

A/4. Substituting our choice of r, k1 and k2, we
find that it suffices to take dd/4e ≤ d2

A/4. �

Corollary 7 shows that, for suitable dimensions, a subspace chosen at
random subject to the symmetry and orthogonality constraints of Eqs. (12c),
(12d) and (12g) from Theorem 2 will, with probability 1, satisfy the strong
unextendibility conditions of Eqs. (12a) and (12b). But Theorem 9 shows that
there is a non-zero probability that such a random subspace will satisfy the
positivity conditions of Eqs. (12e) and (12f). Therefore, for suitable dimen-
sions, there must exist at least one subspace S satisfying all the conditions of
Theorem 2. Hence, by that theorem, there exists a pair of channels E1,2 with
C0(E1,2) = 0 but Q0(E1 ⊗ E2) ≥ 1.

Satisfying all the dimension requirements of Corollary 7 and Theorem 9
imposes constraints on the channel input and output dimensions dA and
dB, and number of Kraus operators dE (which corresponds to the subspace
dimension d). Together, these constraints impose dA ≥ 48 and dE ≥ 12(2dA−
1), giving our main result:

Theorem 10 Let dA = 48, dE = 12(2dA−1) = 1140 and dB = dAdE = 54720.
Then there exist channels E1, E2 such that:

• Each channel E1,2 maps CdA to CdB and has dE Kraus operators.

• Each channel E1,2 has no classical zero-error capacity (hence no quantum
zero-error capacity either).

• The joint channel E1 ⊗ E2 has positive quantum zero-error capacity
(hence all other capacities are non-zero).

(This trivially implies that there exist channels with similar properties in all
dimensions larger than these, too.)
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5 Conclusions
There has been a recent a surge of progress in the theory of quantum channels,
especially their capacities. We now know that two uses of a quantum channel
can sometimes, by using entangled signal states, transmit more than twice
as much classical information as a single use [11]. This makes it (almost!)
inevitable that any expression for the classical capacity will require regulari-
sation, implying that it cannot be computed in general. We have known for
some time that this is also the case for the quantum capacity [12], but we now
also know that the quantum capacity itself is non-additive. Indeed, it exhibits
the particularly extreme form of non-additivity known as superactivation
[4]. This implies that the amount of quantum information that can be sent
through a channel depends on what other channels are also available. Under-
standing these additivity violations is now a key goal of quantum information
theory.

Both manifestations of non-additivity—regularisation and non-additive
capacity—are already displayed by the zero-error capacity of classical chan-
nels [1, 13, 14], though superactivation remains impossible even in the zero-
error setting. Zero-error capacities have been the subject of intense study in
the classical information theory literature for over half a century. They are
therefore an interesting area in which to probe quantum channel capacities,
and attempt to understand non-additivity phenomena. Non-additivity in the
purely classical setting obviously has nothing to do with entanglement. But
quantum channels display even stronger non-additivity than their classical
counterparts: in the quantum world, the presence of entanglement does lead
to superactivation of the classical zero-error capacity of quantum channels [5].

The usual classical and quantum capacities are not at all closely related.
There is no reason to expect that channels displaying additivity violations for
the quantum capacity will possess any interesting additivity properties for the
classical capacities, or vice versa. As a consequence, the recent non-additivity
results for the usual capacities [4, 11] required very different mathematical
techniques for the two cases.

However, in the zero-error setting, this work shows a striking non-additiv-
ity phenomenon that connects the classical and quantum capacities. We
have proven the existence of pairs of channels that, individually, can not
communicate any information with zero error, even classical information.
But, when used together, even a single use of the joint channel suffices to
communicate all forms of information, quantum and classical. These channels
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therefore exhibit the most extreme possible form of additivity violation; their
zero-error capacities simultaneously violate additivity for both classical and
quantum information, and in the most extreme way (superactivation) to boot.
This super-duper-activation is trivially impossible for classical channels, or for
the usual capacities of quantum channels. Zero-error communication therefore
provides a compelling setting in which to explore non-additivity phenomena
in quantum information theory.

Acknowledgements
TSC would like to thank Nilanjana Datta and Francesco Buscemi for stimulat-
ing discussions about these ideas, and the physics of information group at IBM
T. J. Watson Research Center for their hospitality during the visit in which
this work was carried out. GS was supported by DARPA QUEST contract
HR0011-09-C-0047. TSC is supported by a Leverhulme early-career fellowship,
and through the integrated EC project “QAP” (contract no. IST-2005-15848).

References
[1] C. E. Shannon. The zero-error capacity of a noisy channel. IRE Trans.

Inform. Theory, IT-2:8, 1956.

[2] J. Körner and A. Orlitsky. Zero-error information theory. IEEE Trans.
Inform. Theory, 44(6):2207, 1998.

[3] R. A. C. Medeiros and F. M. de Assis. Quantum zero-error capacity. Int.
J. Quant. Inf., 3:135, 2005.

[4] G. Smith and J. Yard. Quantum communication with zero-capacity
channels. Science, 321:1812, 2008. (arXiv:0807.4935 [quant-ph]).

[5] Toby S. Cubitt, Jianxin Chen, and Aram W. Harrow. Superactivation
of the asymptotic zero-error classical capacity of a quantum channel.
arXiv:0906.2547.

[6] R. Duan. Superactivation of zero-error capacity of noisy quantum chan-
nels. arXiv:0906.2527 [quant-ph], 2009.

[7] Joe Harris. Algebraic Geometry. Springer-Verlag, 1992.

18



[8] H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal
quantum and classical fidelity. J. Math. Phys., 43(5):2097–2106, 2002.

[9] Runyao Duan, Jianxin Chen, and Yu Xin. Unambiguous and zero-
error classical capacity of noisy quantum channels. (Manuscript in
preparation).

[10] R. Bhat. A completely entangled subspace of maximal dimension. Int.
J. Quant. Inf., 4(2):325, 2006.

[11] M. B. Hastings. A counterexample to additivity of minimum output
entropy. Nature Physics, 5, 2009. (arXiv:0809.3972 [quant-ph]).

[12] D. P. DiVincenzo, P. W. Shor, and J. A. Smolin. Quantum chan-
nel capacity of very noisy channels. Phys. Rev. A, 57:830, 1998.
(arXiv:quant-ph/9706061).

[13] W. Haemers. On some problems of lovasz concerning the shannon
capacity of a graph. IEEE Trans. Inform. Theory, 25:231–232, 1979.

[14] N. Alon. The shannon capacity of a union. Combinatorica, 18(3):301–310,
1998.

19


	Introduction
	Preliminaries
	Quantum Mechanics
	Algebraic Geometry

	Sufficient Conditions for Super-Duper-Activation
	Existence of Super-Duper-Activation
	Conclusions

