
Emacs Auto-Overlays Manual
Version 0.10

Toby Cubitt

This manual describes the Emacs Auto-Overlays package, version 0.10

Copyright c© 2007, 2008 Toby Cubitt

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

i

Table of Contents

1 Overview . 1

2 Auto-Overlay Functions . 3
2.1 Defining Regexps . 3
2.2 Starting and Stopping Auto-Overlays . 5
2.3 Searching for Overlays . 6

3 Worked Example . 8

4 Extending the Auto-Overlays Package 19
4.1 Auto-Overlays in Depth . 19
4.2 Integrating New Overlay Classes . 20
4.3 Functions for Writing New Overlay Classes . 21

4.3.1 Standard Parse and Suicide Functions . 21
4.3.2 Functions for Modifying Overlays . 21
4.3.3 Functions for Querying Overlays . 22

4.4 Auto-Overlay Hooks . 23
4.5 Auto-Overlay Modification Pseudo-Hooks . 23

5 To-Do . 25

Appendix A Function Index . 26

Appendix B Variable Index . 27

Appendix C Concept Index . 28

Appendix D Copying this Manual 30
D.1 GNU Free Documentation License . 30

D.1.1 ADDENDUM: How to use this License for your documents
. 36

Chapter 1: Overview 1

1 Overview

The auto-overlays package automatically creates, updates and destroys overlays based on
regular expression matches in the buffer text. The overlay is created when text is typed
that matches an auto-overlay regexp, and is destroyed if and when the matching text is
changed so that it no longer matches.

The regexps are grouped into sets, and any number of different sets of regexps can
be active in the same buffer simultaneously. Regexps in different sets are completely in-
dependent, and each set can be activated and deactivated independently (see Section 2.1
[Defining Regexps], page 3). This allows different Emacs modes to simultaneously make use
of auto-overlays in the same buffer.

There are different “classes” of auto-overlay, used to define different kinds of overlay
behaviour. Some classes only require a single regexp, others require separate regexps to
define the start and end of the overlay (see Section 2.1 [Defining Regexps], page 3). Any
additional regexps, beyond the minimum requirements, act as alternatives; if more than
one of the regexps matches overlapping regions of text, the one that appears earlier in the
list will take precedence. The predefined regexp classes are: word, line, self, nested and
flat, but the auto-overlay package can easily be extended with new classes.

word These are used to define overlays that cover the text matched by the regexp
itself, so require a single regexp. An example use would be to create overlays
covering single words.

line These are used to define overlays that stretch from the text matching the reg-
exp to the end of the line, and require a single regexp to define the start of
the overlay. An example use would be to create overlays covering single-line
comments in programming languages such as c.

self These are used to define overlays that stretch from one regexp match to the next
match for the same regexp, so naturally require a single regexp. An example
use would be to create overlays covering strings delimited by ‘""’.

Note that for efficiency reasons, self overlays are not fully updated when a
new match is found. Instead, when a modification is subsequently made at any
position in the buffer after the new match, the overlays are updated up to that
position. The update occurs just before the modification is made. Therefore,
the overlays at a given buffer position will not necessarily be correct until a
modification is made at or after that position (see Chapter 5 [To-Do], page 25).

nested These are used to define overlays that start and end at different regexp matches,
and that can be nested one inside another. This class requires separate start
and end regexps. An example use would be to create overlays between matching
braces ‘{}’.

flat These are used to define overlays that start and end at different regexp matches,
but that can not be nested. Extra start matches within one of these overlays
are ignored. This class requires separate start and end regexps. An example
use would be to create overlays covering multi-line comments in code, e.g. c++
block comments delimited by ‘/*’ and ‘*/’.

Chapter 1: Overview 2

By default, the entire text matching a regexp acts as the “delimeter”. For example, a
word overlay will cover all the text matching its regexp, and a nested overlay will start at
the end of the text matching its start regexp. Sometimes it is useful to be able to have only
part of the regexp match act as the delimeter. This can be done by grouping that part of
the regexp (see Section 2.1 [Defining Regexps], page 3). Overlays will then start and end
at the text matching the group, instead of the text matching the entire regexp.

Of course, automatically creating overlays isn’t much use without some way of setting
their properties too. Overlay properties can be defined along with the regexp, and are
applied to any overlays created by a match to that regexp. Certain properties have impli-
cations for auto-overlay behaviour.

priority This is a standard Emacs overlay property (see Section “Overlay Properties”
in GNU Emacs Lisp Reference Manual), but it is also used to determine which
regexp takes precedence when two or more regexps in the same auto-overlay
definition match overlapping regions of text. It is also used to determine which
regexp’s properties take precedence for overlays that are defined by separate
start and end matches.

exclusive

Normally, different auto-overlay regexps coexist, and act completely indepen-
dently of one-another. However, if an auto-overlay has non-nil exclusive and
priority properties, regexp matches within the overlay are ignored if they
have lower priority. An example use is ignoring other regexp matches within
comments in code.

Chapter 2: Auto-Overlay Functions 3

2 Auto-Overlay Functions

To use auto-overlays in an Elisp package, you must load the overlay classes that you require
by including lines of the form

(require ’auto-overlay-class)

near the beginning of your package, where class is the class name. The standard classes
are: word, line, self, nested and flat (see Chapter 1 [Overview], page 1), though new
classes can easily be added (see Chapter 4 [Extending the Auto-Overlays Package], page 19).

Sometimes it is useful for a package to make use of auto-overlays if any are defined,
without necessarily requiring them. To facilitate this, the relevant functions can be loaded
separately from the rest of the auto-overlays package with the line

(require ’auto-overlay-common)

This provides all the functions related to searching for overlays and retrieving overlay
properties. See Section 2.3 [Searching for Overlays], page 6. Note that there is no need to
include this line if any auto-overlay classes are required, though it will do no harm.

This section describes the functions that are needed in order to make use of auto-overlays
in an Elisp package. It does not describe functions related to extending the auto-overlays
package. See Chapter 4 [Extending the Auto-Overlays Package], page 19.

2.1 Defining Regexps

An auto-overlay definition is a list of the form:

(class &optional :id entry-id regexp1 regexp2 ...)

class is one of the regexp classes described in the previous section (see Chapter 1 [Over-
view], page 1). The optional :id property should be a symbol that can be used to uniquely
identify the auto-overlay definition.

Each regexp defines one of the regexps that make up the auto-overlay definition. It
should be a list of the form

(rgxp &optional :edge edge :id subentry-id @rest property1 property2 ...)

The :edge property should be one of the symbols ’start or ’end, and determines which
edge of the auto-overlay this regexp corresponds to. If :edge is not specified, it is assumed
to be ’start. Auto-overlay classes that do not require separate start and end regexps
ignore this property. The :id property should be a symbol that can be used to uniquely
identify the regexp. Any further elements in the list are cons cells of the form (property

. value), where property is an overlay property name (a symbol) and value its value. In
its simplest form, rgxp is a single regular expression.

If only part of the regexp should act as the delimeter (see Chapter 1 [Overview], page 1),
rgxp should instead be a cons cell:

(rx . group)

where rx is a regexp that contains at least one group (see Section “Regular Expressions”
in GNU Emacs Lisp Reference Manual), and group is an integer identifying which group
should act as the delimeter.

If the overlay class requires additional groups to be specified, rgxp should instead be a
list:

Chapter 2: Auto-Overlay Functions 4

(rx group0 group1 ...)

where rx is a regexp. The first group0 still specifies the part that acts as the delimeter,
as before. If the entire regexp should act as the delimeter, group0 must still be supplied but
should be set to 0 (meaning the entire regexp). None of the standard classes make use of
any additional groups, but extensions to the auto-overlays package that define new classes
may. See Chapter 4 [Extending the Auto-Overlays Package], page 19.

The following functions are used to load and unload regexp definitions:

(auto-overlay-load-definition set-id definition &optional pos)

Load a new auto-overlay definition, which should be a list of the form described
above, into the set identified by the symbol set-id. The optional parameter pos
determines where in the set’s regexp list the new regexp is inserted. If it is nil,
the regexp is added at the end. If it is t, the regexp is added at the beginning.
If it is an integer, the regexp is added at that position in the list. Whilst the
position in the list has no effect on overlay behaviour, it does determine the
order in which regexps are checked, so can affect efficiency.

(auto-overlay-load-regexp set-id entry-id regexp &optional pos)

Load a new regexp, which should be a list of the form described above, into the
auto-overlay definition identified by the symbol entry-id, in the set identified
by the symbol set-id. regexp should be a list of the form described above.
The optional pos determines the position of the regexp in the list of regexps
defining the auto-overlay, which can be significant for overlay behaviour since
it determines which regexp takes precedence when two match the same text.

(auto-overlay-unload-set set-id)

Unload the entire regexp set identified by the symbol set-id.

(auto-overlay-unload-definition set-id entry-id)

Unload the auto-overlay definition identified by the symbol entry-id from the
set identified by the symbol set-id.

(auto-overlay-unload-regexp set-id entry-id subentry-id)

Unload the auto-overlay regexp identified by the symbol subentry-id from the
auto-overlay definition identified by the symbol entry-id in the set identified by
the symbol set-id.

(auto-overlay-share-regexp-set set-id from-buffer @optional to-buffer)

Share the set of regexp definitions identified by the symbol set-id in buffer
from-buffer with the buffer to-buffer, or the current buffer if to-buffer is null.
The regexp set becomes common to both buffers, and any changes made to
it in one buffer, such as loading and unloading regexp definitions, are also
reflected in the other buffer. However, the regexp set can still be enabled and
disabled independently in both buffers. The same regexp set can be shared
between any number of buffers. To remove a shared regexp set from one of
the buffers, simply unload the entire set from that buffer using auto-overlay-

unload-regexp. The regexp set will remain defined in all the other buffers it
was shared with.

Chapter 2: Auto-Overlay Functions 5

2.2 Starting and Stopping Auto-Overlays

A set of regexps is not active until it has been “started”, and can be deactivated by “stop-
ping” it. When a regexp set is activated, the entire buffer is scanned for regexp matches, and
the corresponding overlays created. Similarly, when a set is deactivated, all the overlays are
deleted. Note that regexp definitions can be loaded and unloaded whether the regexp set is
active or inactive, and that deactivating a regexp set does not delete its regexp definitions.

Since scanning the whole buffer for regexp matches can take some time, especially for
large buffers, auto-overlay data can be saved to an auxiliary file so that the overlays can
be restored more quickly if the same regexp set is subsequently re-activated. Of course, if
the text in the buffer is modified whilst the regexp set is disabled, or the regexp definitions
differ from those that were active when the overlay data was saved, the saved data will be
out of date. Auto-overlays automatically checks if the text has been modified and, if it has,
ignores the saved data and re-scans the buffer. However, no check is made to ensure the
regexp definitions used in the buffer and saved data are consistent (see Chapter 5 [To-Do],
page 25); the saved data will be used even if the definitions have changed.

The usual time to save and restore overlay data is when a regexp set is deactivated or
activated. The auxilliary file name is then constructed automatically from the buffer name
and the set-id. However, auto-overlays can also be saved and restored manually.

(auto-overlay-start set-id @optional buffer save-file no-regexp-check)

Activate the auto-overlay regexp set identified by the symbol set-id in
buffer, or the current buffer if the latter is nil. If there is an file called
‘auto-overlay-’buffer-name‘-’set-id in the containing up-to-date overlay
data, it will be used to restore the auto-overlays (buffer-name is the name
of the file visited by the buffer, or the buffer name itself if there is none).
Otherwise, the entire buffer will be scanned for regexp matches.

The string save-file specifies the where to look for the file of saved overlay data.
If it is nil, it defaults to the current directory. If it is a string specifying a
relative path, then it is relative to the current directory, whereas an absolute
path specifies exactly where to look. If it is a string specifying a file name (with
or without a full path, relative or absolute), then it overrides the default file
name and/or location. Any other value of save-file will cause the file of overlay
data to be ignored, even if it exists.

If the overlays are being loaded from a file, but optional argument no-regexp-
check is non-nil, the file of saved overlays will be used, but no check will be made
to ensure regexp refinitions are the same as when the overlays were saved.

(auto-overlay-stop set-id @optional buffer save-file leave-overlays)

Deactivate the auto-overlay regexp set identified by the symbol set-id in buffer,
or the current buffer if the latter is nil. All corresponding overlays will be
deleted (unless the leave-overlays option is non-nil, which should only be used
if the buffer is about to be killed), but the regexp definitions are preserved and
can be reactivated later.

If save-file is non-nil, overlay data will be saved in an auxilliary file called
‘auto-overlay-’buffer-name‘-’set-id in the current directory, to speed up sub-
sequent reactivation of the regexp set in the same buffer (buffer-name is the

Chapter 2: Auto-Overlay Functions 6

name of the file visited by the buffer, or the buffer name itself if there is none).
If save-file is a string, it overrides the default save location, overriding either
the directory if it only specifies a path (relative paths are relative to the current
directory), or the file name if it only specifies a file name, or both.

(auto-overlay-save-overlays set-id @optional buffer file)

Save auto-overlay data for the regexp set identified by the symbol set-id in
buffer, or the current buffer if nil, to an auxilliary file called file. If file is nil,
the overlay data are saved to a file called ‘auto-overlay-’buffer-name‘-’set-
id in the current directory (buffer-name is the name of the file visited by the
buffer, or the buffer name itself if there is none). Note that this is the only
name that will be recognized by auto-overlay-start.

(auto-overlay-load-overlays set-id @optional buffer file no-regexp-check)

Load auto-overlay data for the regexp set identified by the symbol set-id into
buffer, or the current buffer if nil, from an auxilliary file called file. If file is nil,
it attempts to load the overlay data from a file called ‘auto-overlay-’buffer-
name‘-’set-id in the current directory (buffer-name is the name of the file visited
by the buffer, or the buffer name itself if there is none). If no-regexp-check is
no-nil, the saved overlays will be loaded even if different regexp definitions were
active when the overlays were saved. Returns t if the overlays were successfully
loaded, nil otherwise.

2.3 Searching for Overlays

Auto-overlays are just normal Emacs overlays, so any of the standard Emacs functions can
be used to search for overlays and retrieve overlay properties. The auto-overlays package
provides some additional functions.

(auto-overlays-at-point @optional point prop-test inactive)

Return a list of overlays overlapping point, or the point if point is null. The
list includes all overlays, not just auto-overlays (but see below). The list can
be filtered to only return overlays with properties matching criteria specified
by prop-test. This should be a list defining a property test, with one of the
following forms (or a list of such lists, if more than one property test is required):

(function property)

(function property value)

(function (property1 property2 ...) (value1 value2 ...))

where function is a function, property is an overlay property name (a symbol),
and value can be any value or lisp expression. For each overlay, first the values
corresponding to the property names are retrieved from the overlay and any
values that are lisp expressions are evaluated. Then function is called with
the property values followed by the other values as its arguments. The test is
satisfied if the result is non-nil, otherwise it fails. Tests are evaluated in order,
but only up to the first failure. Only overlays that satisfy all property tests are
returned.

All auto-overlays are given a non-nil auto-overlay property, so to restrict the
list to auto-overlays, prop-test should include the following property test:

Chapter 2: Auto-Overlay Functions 7

(’identity ’auto-overlay)

For efficiency reasons, the auto-overlays package sometimes leaves overlays
hanging around in the buffer even when they should have been deleted. These
are marked with a non-nil inactive property. By default, auto-overlays-
at-point ignores these. A non-nil inactive will override this, causing inactive
overlays to be included in the returned list (assuming they pass all property
tests).

(auto-overlays-in start end @optional prop-test within inactive)

Return a list of overlays overlapping the region between start and end.
The prop-test and inactive arguments have the same behaviour as in
auto-overlays-at-point, above. If within is non-nil, only overlays that are
entirely within the region from start to end will be returned, not overlays that
extend outside that region.

(auto-overlay-highest-priority-at-point @optional point prop-test)

Return the highest priority overlay at point (or the point, of point is null). The
prop-test argument has the same behaviour as in auto-overlays-at-point,
above. An overlay’s priority is determined by the value of its priority property
(see Section “Overlay Properties” in GNU Emacs Lisp Reference Manual). If
two overlays have the same priority, the innermost one takes precedence (i.e.
the one that begins later in the buffer, or if they begin at the same point the
one that ends earlier; if two overlays have the same priority and extend over
the same region, there is no way to predict which will be returned).

(auto-overlay-local-binding symbol @optional point)

Return the “overlay-local” binding of symbol at point (or the point if point is
null), or the current local binding if there is no overlay binding. An “overlay-
local” binding for symbol is the value of the overlay property called symbol. If
more than one overlay at point has a non-nil symbol property, the value from
the highest priority overlay is returned (see auto-overlay-highest-priority-
at-point, above, for an explanation of “highest priority”).

Chapter 3: Worked Example 8

3 Worked Example

The interaction of all the different regexp definitions, overlay properties and auto-overlay
classes provided by the auto-overlay package can be a little daunting. This section will go
through an example of how the auto-overlay regexps could be defined to create overlays for
a subset of LATEX, which is complex enough to demonstrate most of the features.

LATEX is a markup language, so a LATEX document combines markup commands with
normal text. Commands start with ‘\’, and end at the first non-word-constituent character.
We want to highlight all LATEX commands in blue. Two commands that will particularly
interest us are ‘\begin’ and ‘\end’, which begin and end a LATEX environment. The envi-
ronment name is enclosed in braces: ‘\begin{environment-name}’, and we want it to be
highlighted in pink. LATEX provides many environments, used to create lists, tables, titles,
etc. We will take the example of an ‘equation’ environment, used to typeset mathematical
equations. Thus equations are enclosed by ‘\begin{equation}’ and ‘\end{equation}’, and
we would like to highlight these equations in yellow. Another example we will use is the
‘$’ delimiter. Pairs of ‘$’s delimit mathematical expressions that appear in the middle of a
paragraph of normal text (whereas ‘equation’ environments appear on their own, slightly
separated from surrounding text). Again, we want to highlight these mathematical expres-
sions, this time in green. The final piece of LATEX markup we will need to consider is the
‘%’ character, which creates a comment that lasts till the end of the line (i.e. text after the
‘%’ is ignored by the LATEX processor up to the end of the line).

LATEX commands are a good example of when to use word regular expressions (see
Chapter 1 [Overview], page 1). The appropriate regexp definition is loaded by

(auto-overlay-load-definition

’latex

’(word ("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)"

(face . (background-color . "blue")))))

We have called the regexp set latex. The face property is a standard Emacs overlay
property that sets font properties within the overlay. See Section “Overlay Properties” in
GNU Emacs Lisp Reference Manual. "\\\\" is the string defining the regexp that matches
a single ‘\’. (Note that the ‘\’ character has a special meaning in regular expressions, so to
include a literal one it must be escaped: ‘\\’. However, ‘\’ also has a special meaning in
lisp strings, so both ‘\’ characters must be escaped there too, giving \\\\.) [[:alpha:]]*?

matches a sequence of zero or more letter characters. The ? ensures that it matches the
shortest sequence of letters consistent with matching the regexp, since we want the region
to end at the first non-letter character, matched by [^[:alpha:]]. The \| defines an
alternative, to allow the LATEX command to be terminated either by a non-letter character
or by the end of the line ($). See Section “Regular Expressions” in GNU Emacs Lisp
Reference Manual, for more details on Emacs regular expressions.

However, there’s a small problem. We only want the blue background to cover the
characters making up a LATEX command. But as we’ve defined things so far, it will cover
all the text matched by the regexp, which includes the leading ‘\’ and the trailing non-
letter character. To rectify this, we need to group the part of the regexp that matches the
command (i.e. by surround it with ‘\(’ and ‘\)’), and put the regexp inside a cons cell
containing the regexp in its car and a number indicating which subgroup to use in its cdr:

Chapter 3: Worked Example 9

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

The ‘$’ delimiter is an obvious example of when to use a self regexp (see Chapter 1
[Overview], page 1). We can update our example to include this (note that ‘$’ also has a
special meaning in regular expressions, so it must be escaped with ‘\’ which itself must be
escaped in lisp strings):

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (face . (background-color . "green")))))

This won’t quite work though. LATEX maths commands also start with a ‘\’ character, which
will match the word regexp. For the sake of example we want the entire equation highlighted
in green, without highlighting any LATEX maths commands it contains in blue. Since the
word overlay will be within the self overlay, the blue highlighting will take precedence. We
can change this by giving the self overlay a higher priority (any priority is higher than a
non-existent one; we use 3 here for later convenience). For efficiency reasons, it’s a good
idea to put higher priority regexp definitions before lower priority ones, so we get:

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

The ‘\begin{equation}’ and ‘\end{equation}’ commands also enclose maths regions,
which we would like to highlight in yellow. Since the opening and closing delimiters are
different in this case, we must use nested overlays (see Chapter 1 [Overview], page 1). Our
example now looks like:

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

Chapter 3: Worked Example 10

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

Notice how we’ve used separate start and end regexps to define the auto-overlay. Once
again, we have had to escape the ‘\’ characters, and increase the priority of the new regexp
definition to avoid any LATEX commands within the maths region being highlighted in blue.

LATEX comments start with ‘%’ and last till the end of the line: a perfect demonstration
of a line regexp. Here’s a first attempt:

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

(auto-overlay-load-definition

’latex

‘(line ("%" (face . (background-color

. ,(face-attribute ’default :background))))))

We use the standard Emacs face-attribute function to retrieve the default background
colour, which is evaluated before the regexp definition is loaded. (This will of course go
wrong if the default background colour is subsequently changed, but it’s sufficient for this
example). Let’s think about this a bit. We probably don’t want anything within a comment
to be highlighted at all, even if it matches one of the other regexps. In fact, creating overlays
for ‘\begin’ and ‘\end’ commands which are within a comment could cause havoc! If they

Chapter 3: Worked Example 11

don’t occur in pairs within the commented region, they will erroneously pair up with ones
outside the comment. We need comments to take precedence over everything else, and we
need them to block other regexp matches, so we boost the overlay’s priority and set the
exclusive property:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

We’re well on our way to creating a useful setup, at least for the LATEX commands we’re
considering in this example. There is one last type of overlay to create, but it is the most
complicated. We want environment names to be highlighted in pink, i.e. the region between
‘\begin{’ and ‘}’. A first attempt at this might result in:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

Chapter 3: Worked Example 12

’(nested

("\\begin{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("}"

:edge end

(priority . 2)

(face . (background-color . "pink")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

However, we’ll hit a problem with this. The ‘}’ character also closes the ‘\end{’ command.
Since we haven’t told auto-overlays about ‘\end{’, every ‘}’ that should close an ‘\end{’
command will instead be interpreted as the end of a ‘\start{’ command, probably resulting
in lots of unmatched ‘}’ characters, creating pink splodges everywhere! Clearly, since we
also want environment names between ‘\end{’ and ‘}’ to be pink, we need something more
along the lines of:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{"

Chapter 3: Worked Example 13

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\end{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("}"

:edge end

(priority . 2)

(face . (background-color . "pink")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

We still haven’t solved the problem though. The ‘}’ character doesn’t only close ‘\begin{’
and ‘\end{’ commands in LATEX. All arguments to LATEX commands are surrounded by ‘{’
and ‘}’. We could add all the commands that take arguments, but we don’t really want to
bother about any other commands (at least in this example). All we want to do is prevent
predictive mode incorrectly pairing the ‘}’ characters used for other commands. Instead,
we can just add ‘{’ to the list:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

Chapter 3: Worked Example 14

’(nested

("{"

:edge start

(priority . 2))

("\\begin{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\end{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("}"

:edge end

(priority . 2))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

Notice how the { and } regexps do not define a background colour (or indeed any other
properties), so that any overlays they create will have no effect other than making sure all
‘{’ and ‘}’ characters are correctly paired.

We’ve made one mistake though: by putting the { regexp at the beginning of the list, it
will take priority over any other regexp in the list that could match the same text. And since
{ will match whenever \begin{ or \end{ matches, environments will never be highlighted!
The { regexp must come after the \begin{ and \end{ regexps, to ensure it is only used if
neither of them match (it doesn’t matter whether it appears before or after the { regexp,
since the latter will never match the same text):

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

Chapter 3: Worked Example 15

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\end{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("{"

:edge start

(priority . 2))

("}"

:edge end

(priority . 2))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

There is one last issue. A literal ‘{’ or ‘}’ character can be included in a LATEX document
by escaping it with ‘\’: ‘\{’ and ‘\}’. In this situation, the characters do not match anything
and should not be treated as delimiters. We can modify the { and } regexps to exclude
these cases:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

Chapter 3: Worked Example 16

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\end{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\([^\\]\\|^\\){"

:edge start

(priority . 2))

("\\([^\\]\\|^\\)}"

:edge end

(priority . 2))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

The new, complicated-looking regexps will only match ‘{’ and ‘}’ characters if they are
not preceded by a ‘\’ character (see Section “Regular Expressions” in GNU Emacs Lisp
Reference Manual). Note that the character alternative [^\]\|^ can match any character
that isn’t a ‘\’ or the start of a line. This is required because macthes to auto-overlay
regexps are not allowed to span more than one line. If ‘{’ or ‘}’ appear at the beginning of

Chapter 3: Worked Example 17

a line, there will be no character in front (the newline character doesn’t count, since it isn’t
on the same line), so the [^\] will not match.

However, when it does match, the } regexp will now match an additional character
before the }, causing the overlay to end one character early. (The { regexp will also match
one additional character before the {, but since the beginning of the overlay starts from
the end of the start delimiter, this poses less of a problem.) We need to group the part
of the regexp that should define the delimiter, i.e. the }, by surrounding it with \(and
\), and put the regexp in the car of a cons cell whose cdr specifies the new subgroup (i.e.
the 2nd subgroup, since the regexp already included a group for other reasons; we could
alternatively replace the original group by a shy-group, since we don’t actually need to
capture match data for that group). Our final version looks like this:

(auto-overlay-load-definition

’latex

‘(line ("%" (priority . 4) (exclusive . t)

(face . (background-color

. ,(face-attribute ’default :background))))))

(auto-overlay-load-definition

’latex

’(self ("\\$" (priority . 3) (face . (background-color . "green")))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\end{"

:edge start

(priority . 2)

(face . (background-color . "pink")))

("\\([^\\]\\|^\\){"

:edge start

(priority . 2))

(("\\([^\\]\\|^\\)\\(}\\)" . 2)

:edge end

(priority . 2))))

(auto-overlay-load-definition

’latex

’(nested

("\\begin{equation}"

:edge start

(priority . 1)

(face . (background-color . "yellow")))

Chapter 3: Worked Example 18

("\\end{equation}"

:edge end

(priority . 1)

(face . (background-color . "yellow")))))

(auto-overlay-load-definition

’latex

’(word (("\\\\[[:alpha:]]*?\\([^[:alpha:]]\\|$\\)" . 1)

(face . (background-color . "blue")))))

With these regexp definitions, LATEX commands will automatically be highlighted in
blue, equation environments in yellow, inline maths commands in green, and environment
names in pink. LATEX markup within comments will be ignored. And ‘{’ and ‘}’ characters
from other commands will be correctly taken into account. All this is done in “real-time”;
it doesn’t wait until Emacs is idle to update the overlays. Not bad for a bundle of regexps!

Of course, this could all be done more easily using Emacs’ built-in syntax highlighting
features, but the highlighting was only an example to show the location of the overlays.
The main point is that the overlays are automatically created and kept up to date, and can
be given any properties you like and used for whatever purpose is required by your Elisp
package.

Chapter 4: Extending the Auto-Overlays Package 19

4 Extending the Auto-Overlays Package

The auto-overlay package can easily be extended by adding new overlay classes1. The next
sections document the functions and interfaces provided by the auto-overlays package for
this purpose.

Often, a new class is a minor modification of one of the standard classes. For example,
it may work exactly like one of the standard classes, but in addition call some function
whenever an overlay is created or destroyed. In this case, it is far better to build the
new class on top of the existing class, using functions from the class-specific Elisp files,
rather than starting from scratch. See Section 4.3.1 [Standard Parse and Suicide Functions],
page 21.

4.1 Auto-Overlays in Depth

In order to write new classes, a deeper understanding is required of how the auto-overlay
package works. In fact, two kinds of overlays are automatically created, updated and de-
stroyed when auto-overlays are active: the auto-overlays themselves, and “match” overlays,
used to mark text that matches an auto-overlay regexp.

For overlay classes that only require one regexp to fully define an overlay (the word and
line classes are the only standard classes like this2), the auto-overlays are always matched
with the corresponding match overlay. For classes that require two regexp matches to define
the start and end of an overlay (all other standard classes), each edge of an auto-overlay can
be matched with a match overlay. The match overlays define where the edge of the auto-
overlay is located. There will always be at least one matched edge, since an auto-overlay is
only created when a regexp match is found, but it is possible for the second edge to not yet
be matched (for many classes, the unmatched edge will be located at the beginning or end
of the buffer).

If a match overlay delimits the start of an auto-overlay, the match overlay is stored in
the auto-overlay’s start property. The match overlay is also stored in the start property
for auto-overlays that only require a single match. If a match overlay delimits the end of
an auto-overlay, the match overlay is stored in the auto-overlay’s end property. Conversely,
a “link” to the auto-overlay is always stored in the match overlay’s parent property3.

Whenever a buffer is modified, the lines containing the modifications are scanned for
new regexp matches. If one is found, a new match overlay is created covering the matching
text, and then passed as an argument to the appropriate “parse” function4 for its class.
This deals with creating or updating the auto-overlays as appropriate. If the text within a
match overlay is modified, the match overlay checks whether the text it covers still matches
the regexp. If it no longer matches, the match overlay is passed as an argument to the
appropriate “suicide” function for its class, which deals with updating or deleting its parent
auto-overlay (and possibly more besides).

1 Or rather, it is easy to integrate new overlay classes into the package. Whether writing a new overlay
class is easy or not depends on what you’re trying to do, and how good your coding skills are ;-)

2 Although the self class only requires one regexp definition, the auto-overlays themselves require two
matches to that same regexp to set the start and end of the overlay.

3 The “parent” terminology is admittedly very poor, and is a relic of a previous incarnation of the auto-
overlays package, when it made more sense.

4 More bad terminology.

Chapter 4: Extending the Auto-Overlays Package 20

To summarise, the core of the auto-overlays package deals with searching for regexp
matches, and creating or deleting the corresponding match overlays. It then hands over
the task of creating, updating or deleting the auto-overlays themselves to class-specific
functions, which implement the correct behaviour for that class.

4.2 Integrating New Overlay Classes

To add a new overlay class, all that is required is to write new “parse” and “suicide” func-
tions, and inform the auto-overlays package of their existence. A “match” function can also
optionally be defined. It is called whenever a match overlay in the class becomes matched
with the edge of an auto-overlay (see Section 4.3.2 [Functions for Modifying Overlays],
page 21). The parse, suicide and match functions are conventionally called auto-o-parse-

class-match, auto-o-class-suicide and auto-o-match-class, where class is the name of
the class, though the convention is not enforced in any way.

parse function
A parse function is passed a single argument containing a match overlay. It
should return a list containing any new auto-overlays it creates, or nil if none
were created.

o-list = (auto-o-parse-class-match o-match)

Note that the parse function itself is responsible for calling the auto-o-update-
exclusive function if a new exclusive overlay is created. See Section 4.3.2
[Functions for Modifying Overlays], page 21.

suicide function
A suicide function is passed a single argument containing a match overlay. Its
return value is ignored.

(auto-o-class-suicide o-match)

The text covered by the match overlay should be considered to no longer match
its regexp, although in certain cases matches are ignored for other reasons and
this may not really be the case (for example if a new, higher-priority, exclusive
overlay overlaps the match, see Chapter 1 [Overview], page 1).

match function
A match function is passed a single argument containing a match overlay that
has just been matched with an edge of an auto-overlay (see Section 4.3.2 [Func-
tions for Modifying Overlays], page 21). Its return value is ignored.

(auto-o-match-class o-match)

The auto-overlay it is matched with is stored in the match overlay’s parent

property.

To integrate the new class into the auto-overlays package, the parse and suicide functions
must be added to the property list of the symbol used to refer to the new class, denoted
here by class:

(put ’class ’auto-overlay-parse-function

’auto-o-parse-class-match)

(put ’class ’auto-overlay-suicide-function

’auto-o-class-suicide)

Chapter 4: Extending the Auto-Overlays Package 21

If the optional match function is defined, it should similarly be added to the symbol’s
property list:

(put ’class ’auto-overlay-match-function

’auto-o-match-class)

4.3 Functions for Writing New Overlay Classes

Some functions are provided by the auto-overlays package for use in new parse and suicide
functions. The functions that modify overlays carry out tasks that require interaction with
the core of the auto-overlays package, and provide the only reliable way of carrying out
those tasks. The other functions are used to query various things about auto-overlays
and match overlays. Again, they are the only reliable interface for this, since the internal
implementation may change between releases of the auto-overlays package.

4.3.1 Standard Parse and Suicide Functions

All the standard overlay classes define their own parse and suicide functions (none of them
require a match function), which can be used to create new “derived” classes based on
the standard ones. This is the easiest and most common way to create a new class. For
example, the new class may behave exactly like one of the standard classes, but perform
some additional processing whenever an overlay is created, destroyed, or matched. The
parse and suicide functions for the new class should perform whatever additional processing
is required, and call the standard class functions to deal with creating and destroying the
overlay.

All the standard parse and suicide functions follow the same naming convention (see
Section 4.2 [Integrating New Overlay Classes], page 20), where class is the name of the
overlay class (one of word, line, self, nested or flat, see Chapter 1 [Overview], page 1):

(auto-o-parse-class-match o-match)

Parse a new match overlay o-match whose class is class. This will create or
update auto-overlays, as appropriate for the class.

(auto-o-class-suicide o-match)

Delete or update auto-overlays as appropriate for overlay class class, due to the
match overlay o-match no longer matching.

4.3.2 Functions for Modifying Overlays

These functions modify auto-overlays and match overlays as necessary to perform a particu-
lar update. They should always be used to carry out their corresponding tasks, rather than
doing it separately, since these tasks require interaction with the core of the auto-overlays
package.

(auto-o-update-exclusive set-id beg end old-priority new-priority)

Update the region between beg and end in the current buffer as necessary due
to the priority of an exclusive overlay overlapping the region changing from
old-priority to new-priority. If the exclusive overlay did not previously overlap
the region, old-priority should be null. If it no longer overlaps the region, new-
priority should be null. (If both are null, nothing will happen!) The return
value is meaningless.

Chapter 4: Extending the Auto-Overlays Package 22

(auto-o-match-overlay overlay start @optional end no-props no-parse

protect-match)

Match or unmatch the start and end of the auto-overlay overlay, update all
appropriate properties (such as parent, start and end properties, and any
properties specified in regexp definitions), and update other auto-overlays in
the region covered by overlay if required because the exclusive or priority
properties of overlay have changed.

If start or end are match overlays, match the corresponding edge of overlay.
The edge is moved to the location defined by the match overlay, and the parent
property of the match overlay and the start and end properties of overlay are
updated accordingly. The start argument should be a match overlay corre-
sponding either to the unique regexp if only one is needed for that overlay
class, or to a start regexp if the overlay class uses separate start and end reg-
exps. The end argument should then be a match overlay corresponding to an
end regexp in such a class (see Chapter 1 [Overview], page 1). You’re respon-
sible for enforcing this; no check is made.

If start or end are numbers or markers, move the corresponding edge of overlay
to that location and set it as unmatched. The start or end property of overlay
and the parent property of any corresponding match overlay are set to nil). If
start or end are non-nil but neither of the above, leave the corresponding edge
of overlay where it is, but set it unmatched (as described above). If start or end
are null, don’t change the corresponding edge. However, for convenience, if end
is null but start is a match overlay corresponding to a match for an end-regexp,
match the end of overlay rather than the start.

The remaining arguments disable some of the tasks normally carried out by
auto-o-match-overlay. If no-props is non-nil, overlay properties specified in
regexp definitions are ignored and not updated. If no-parse is non-nil, auto-
overlays in the region covered by overlay are not updated, even if the exclusive
or priority properties of overlay have changed. If protect-match is non-nil,
the parent properties of the start and end match overlays are left alone.

(auto-o-delete-overlay overlay @optional no-parse protect-match)

Delete auto-overlay overlay from the buffer, and update overlays and overlay
properties as necessary. The optional arguments disable parts of the updating
process, as for auto-o-match-overlay, above.

4.3.3 Functions for Querying Overlays

These functions query certain things about auto-overlays or match overlays, or retrieve
certain values associated with them. A few are merely convenience functions, but most
depend on the internal implementation details of the auto-overlays package, and provide
the only reliable interface for whatever they return.

(auto-o-class o-match)

Return the class of match overlay o-match.

(auto-o-regexp o-match)

Return the regular expression matched by the text covered by match overlay
o-match.

Chapter 4: Extending the Auto-Overlays Package 23

(auto-o-regexp-group o-match)

Return the regexp group defined in the regexp definition corresponding to match
overlay o-match (see Section 2.1 [Defining Regexps], page 3).

(auto-o-props o-match)

Return the list of overlay properties defined in the regexp definition correspond-
ing to match overlay o-match (see Section 2.1 [Defining Regexps], page 3).

(auto-o-edge o-match)

Return edge (the symbol start or end) of match overlay o-match.

(auto-o-parse-function o-match)

Return appropriate parse function for match overlay o-match.

(auto-o-suicide-function o-match)

Return appropriate suicide function for match overlay o-match.

(auto-o-match-function o-match)

Return match function for match overlay o-match, if any.

(auto-o-edge-matched-p overlay edge)

Return non-nil if edge (the symbol start or end) of auto-overlay overlay is
matched.

(auto-o-start-matched-p overlay)

Return non-nil if auto-overlay overlay is start-matched.

(auto-o-end-matched-p overlay)

Return non-nil if auto-overlay overlay is end-matched.

4.4 Auto-Overlay Hooks

The auto-overlays package defines two hooks, that are called when auto-overlays are enabled
and disabled in a buffer. These are intended to be used by overlay classes to set up any
extra buffer-local variables and settings they require, and clean them up afterwards. (There
is no point leaving auto-overlay variables and settings hanging around in a buffer when
auto-overlays are not in use.)

auto-overlay-load-hook

This hook is run when the first auto-overlay regexp set in a buffer is started, us-
ing the auto-overlay-start function. See Section 2.2 [Starting and Stopping
Auto-Overlays], page 5.

auto-overlay-unload-hook

This hook is run when the last auto-overlay regexp set in a buffer is stopped,
using the auto-overlay-stop function. See Section 2.2 [Starting and Stopping
Auto-Overlays], page 5.

4.5 Auto-Overlay Modification Pseudo-Hooks

The auto-overlays package adds functions to buffer and overlay modification hooks in order
to update the overlays as the buffer text is modified (see Section “Modification Hooks” in
GNU Emacs Lisp Reference Manual). The order in which all these modification hooks are

Chapter 4: Extending the Auto-Overlays Package 24

called is undefined in Emacs5. Therefore, the auto-overlays package provides a mechanism
to schedule functions to run at particular points during the overlay update process.

There are two stages to the overlay update process: first, any match overlay suicide
functions are called, then modified buffer lines are scanned for new regexp matches. Three
pseudo-hooks are defined that are called before, after and in between these stages. Their
values are lists containing elements of the form:

(function arg1 arg2 ...)

where function is the function to be called by the hook, and the arg ’s are the arguments
to be passed to that function. The list elements are evaluated in order. The pseudo-hooks
are cleared each time after they have been called.

auto-o-pending-pre-suicide

Pseudo-hook called before any suicide functions.

auto-o-pending-post-suicide

Pseudo-hook called after any suicide functions but before scanning for regexp
matches.

auto-o-pending-post-update

Pseudo-hook called after scanning for regexp matches.

These pseudo-hooks can be used to ensure that a function that would normally be added
to a modification hook will be called at a particular point in the auto-overlay update process.
To achieve this, a helper function must be added to the modification hook instead. The
helper function should add the function itself to the appropriate pseudo-hook by adding a
list element with the form described above. The push and add-to-list Elisp functions are
the most useful ways to add elements to the list.

5 Or at least undocumented, and therefore unreliable.

Chapter 5: To-Do 25

5 To-Do

Things that still need to be implemented (in no particular order):

1. There needs to be an eager-self overlay class, similar to the existing self class
but updated immediately, rather than waiting for buffer modifications. This will be
significantly less efficient, but is necessary for applications that require overlays to be
up to date all the time, not just when the buffer is being modified.

2. Currently, it’s difficult to deal with nested class regexps for which the end regexps
match some start regexps of interest but also others that are irrelevant. E.g. ‘{’
and ‘}’ in LATEX when you’re only interested in ‘\somecommand{’ start regexps. Or
matching parens in LISP, when you’re only interested in function bodies, say. The
only solution is to include all start regexps, but not set any of their properties. This
can end up creating a lot of overlays! A variant of the nested class that avoids this
problem is needed.

Appendix A: Function Index 26

Appendix A Function Index

auto-o-{class}-suicide 20, 21
auto-o-class . 22
auto-o-delete-overlay . 22
auto-o-edge . 23
auto-o-edge-matched-p . 23
auto-o-end-matched-p . 23
auto-o-match-{class} . 20
auto-o-match-function . 23
auto-o-match-overlays . 22
auto-o-parse-{class}-match 20, 21
auto-o-parse-function . 23
auto-o-props . 23
auto-o-regexp . 22
auto-o-regexp-group . 23
auto-o-start-matched-p . 23
auto-o-suicide-function . 23

auto-o-update-exclusive . 21

auto-overlay-highest-priority-at-point 7

auto-overlay-load-definition 4

auto-overlay-load-overlays 6

auto-overlay-load-regexp . 4

auto-overlay-local-binding 7

auto-overlay-save-overlays 6

auto-overlay-share-regexp-set 4

auto-overlay-start . 5

auto-overlay-stop . 5

auto-overlay-unload-definition 4

auto-overlay-unload-regexp 4

auto-overlay-unload-set . 4

auto-overlays-at-point . 6

auto-overlays-in . 7

Appendix B: Variable Index 27

Appendix B Variable Index

auto-o-pending-post-suicide 24
auto-o-pending-post-update 24
auto-o-pending-pre-suicide 24

auto-overlay-load-hook . 23

auto-overlay-unload-hook 23

Appendix C: Concept Index 28

Appendix C Concept Index

A
adding new overlay classes . 19
auto-overlay definitions . 4
auto-overlay definitions, unloading 4
auto-overlays in depth . 19
auto-overlays, defining . 4
auto-overlays, loading . 4

B
buffers, sharing regexp sets between 4

C
class, flat . 1
class, line . 1
class, line example . 10
class, nested . 1
class, nested example . 9, 11
class, self . 1
class, self example . 9
class, standard parse functions 21
class, standard suicide functions 21
class, word . 1
class, word example . 8
classes of overlay . 1
classes, adding new . 19
classes, integrating new . 20

D
defining auto-overlays . 4
defining regexps . 3, 4
deleting overlays . 22
delimeter . 2

E
example . 8
example, line class . 10
example, nested class . 9, 11
example, self class . 9
example, word class . 8
exclusive property . 2, 21
extending the auto-overlays package 19
extending, deleting overlays . 22
extending, functions . 21
extending, functions for modifying overlays 21
extending, functions for querying overlays 22
extending, integrating new overlay classes 20
extending, matching overlays 22
extending, standard parse functions 21
extending, standard suicide functions 21

extending, updating exclusive 21

F
FDL, GNU Free Documentation License 30
finding overlays . 6
flat overlay class . 1
functions . 3
functions, defining regexps . 3, 4
functions, loading and saving overlays 5
functions, loading and unloading regexps 3, 4
functions, match function . 20
functions, modifying overlays 21
functions, parse function . 20
functions, querying overlays . 22
functions, scheduling . 23
functions, searching for overlays 6
functions, starting and stopping overlays 5
functions, suicide function . 20
functions, writing new overlay classes 21

G
grouping in regexps . 2

H
highest priority overlay . 7
hooks . 23
hooks, loading and unloading 23
hooks, modification . 23

I
integrating new classes, match function 20
integrating new classes, parse function 20
integrating new classes, suicide function 20
integrating new overlay classes 20

L
LaTeX . 8
line overlay class . 1
line overlay class example . 10
loading auto-overlay definitions 4
loading overlays . 5
loading regexps . 4
loading the package . 3
local-binding . 7

M
match function . 20

Appendix C: Concept Index 29

matching overlays . 22
modification pseudo-hooks . 23

N
nested overlay class . 1
nested overlay class example. 9, 11

O
overlay class, flat . 1
overlay class, line . 1
overlay class, line example . 10
overlay class, nested . 1
overlay class, nested example 9, 11
overlay class, self . 1
overlay class, self example . 9
overlay class, word . 1
overlay class, word example . 8
overlay classes . 1
overlay classes, functions for writing new 21
overlay classes, integrating new 20
overlay classes, match function 20
overlay classes, parse function 20
overlay classes, standard parse functions 21
overlay classes, standard suicide functions 21
overlay classes, suicide function 20
overlay properties . 2, 6
overlay property, exclusive 2, 21
overlay property, priority . 2
overlay-local binding . 7
overlays, deleting . 22
overlays, finding . 6
overlays, functions for modifying 21
overlays, functions for querying 22
overlays, local-binding . 7
overlays, matching . 22
overlays, priority . 7
overlays, saving and loading . 5
overlays, starting and stopping 5
Overview . 1

P
package, extending . 19
package, hooks . 23
package, in depth . 19
package, loading . 3

parse function . 20
priority property . 2

R
regexp definitions, unloading . 4
regexp groups . 2
regexp sets . 1
regexp sets, sharing between buffers 4
regexp sets, starting and stopping 5
regexp sets, unloading . 4
regexps, defining . 3, 4
regexps, loading . 4
regexps, loading and unloading 3, 4
regexps, unloading . 4
require . 3

S
saving overlays . 5
scheduling functions after modification 23
searching for overlays . 6
self overlay class . 1
self overlay class example . 9
sets of regexps . 1
sharing regexp sets . 4
standard parse and suicide functions 21
starting and stopping auto-overlays 5
suicide function . 20

T
to-do . 25

U
unloading regexp definitions . 4
unloading regexp sets . 4
unloading regexps . 4
updating exclusive regions . 21
using auto-overlays . 3

W
word overlay class . 1
word overlay class example . 8
worked example . 8

Appendix D: Copying this Manual 30

Appendix D Copying this Manual

D.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix D: Copying this Manual 31

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix D: Copying this Manual 32

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix D: Copying this Manual 33

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix D: Copying this Manual 34

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix D: Copying this Manual 35

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix D: Copying this Manual 36

D.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Overview
	Auto-Overlay Functions
	Defining Regexps
	Starting and Stopping Auto-Overlays
	Searching for Overlays

	Worked Example
	Extending the Auto-Overlays Package
	Auto-Overlays in Depth
	Integrating New Overlay Classes
	Functions for Writing New Overlay Classes
	Standard Parse and Suicide Functions
	Functions for Modifying Overlays
	Functions for Querying Overlays

	Auto-Overlay Hooks
	Auto-Overlay Modification Pseudo-Hooks

	To-Do
	Function Index
	Variable Index
	Concept Index
	Copying this Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

