
9

Chapter 1

Brief Introduction to
Complexity Theory

Complexity theory is the rigorous analysis of the computational resources
(space, time, . . .) required to solve a problem. More precisely, it concerns
the scaling of the resources as a function of the size of the problem. This
is a rich and fascinating area of late-twentieth science, at the interface be-
tween mathematics and computer science. There are many examples of deep
complexity-theoretic results that give us highly non-trivial insights into the
nature of computation. Alas, all beyond the scope of this brief introduction!

This is not a course on complexity theory. We will briefly survey the basic
definitions and concepts (which are all that are needed for this course), and
then move on as quickly as possible to applying these concepts to quantum
many-body physics.

But, lest you get the impression that complexity theory is nothing more
than definitions and classification, take one of the modern textbooks on the
subject out of the library [AB09; Pap03], read it, and this impression will
quickly be dispelled. (And you will have learned some fascinating mathematics
to boot!)

1.1 Computational Problems
Before we can talk about the computational complexity of problems, we need
to know what a computational problem is ! In a moment, we will give a precise
definition. But it is instructive to first see some examples of how well-known
mathematical questions can be formulated as computational problems.

Problem 1 (Factoring)
Input: n ∈ N
Output: Factors of n

c© 2014-2015 Toby Cubitt

10 1.1. COMPUTATIONAL PROBLEMS

Problem 2 (Travelling salesman)
Input: Weighted graph G
Output: Hamiltonian cycle with minimum weight.

Problem 3 (SAT)
Input: Boolean expression made up of ∧, ∨, ¬ over boolean variables {bi}
Output: YES if ∃ variable assignment s.t. expression evaluates to “true”;
otherwise NO.

The SAT problem is an example of a decision problem: it has a binary
YES/NO answer. Decision problems are less restrictive than they might at
first appear. Many computational problems have equivalent∗ formulations as
decision problems, e.g:

Problem 4 (Factoring (decision variant))
Input: n, k ∈ N
Output: YES if n has a factor < k; otherwise NO.

Exercise 1 Show that if you can solve the Factoring decision problem, you
can also find the factors. Give a decision variant of the Travelling Salesman
problem, and show that solving this lets you find the lowest-weight Hamiltonian
cycle.

The general definition of a decision problem is exactly what you’d expect
from these examples:

Definition 5 (Decision problem) A decision problem is a binary function
f : X 7→ {0, 1} on a countably-infinite set X. Each input x ∈ X defines a
different instance of the problem.

Note that a computational problem by definition consists of a countably-
infinite family of questions, or instances. Each integer gives a different
instance of the Factoring problem; each weighted graph gives a different
instance of the Travelling Salesman problem; each boolean expression gives a
different instance of the SAT problem. Since we are interested in the scaling
of resources with problem size, it makes no sense in complexity theory to talk
about the complexity of a single instance of a problem.

Strictly speaking, the size of a problem instance is the number of bits
of information required to specify that instance. However, typically there
is some natural measure of problem size which serves just as well. E.g. the
number of digits in n for the Factoring problem, the number of vertices in the

∗See Section 1.4 for a rigorous definition of “equivalent”.

c© 2014-2015 Toby Cubitt

CHAPTER 1. COMPLEXITY THEORY 11

graph for the Travelling Salesman problem, or the number of variables in a
SAT problem. Where the number of bits of information needed to specify an
instance scales polynomially in some more natural measure of problem size,
it is common practice to take that to define the size of the problem.

In principle, we must be careful when talking about decision problems
involving real numbers. The reals are not a countable set, so to have a well-
defined computational problem we must restrict the real numbers involved to
finite precision. Equivalently, we can define the problem over a dense subset
of the reals, such as the rationals. The problem size therefore depends on the
precision to which the input is given.

In practice, this rarely poses much difficulty. It is common practice to
talk about computational problems involving real numbers, leaving implicit
the fact that the problem should strictly speaking be discretised. Usually, the
results go through (just with more notation and more tedious technicalities!)
when one explicitly takes the discretisation into account.

Sometimes it makes sense to restrict a decision problem to a particular
(but still countably-infinite) subset of instances. Think of this as if the person
asking the question has promised that all the instances they will ask you
about have some particular property. The promise can substantially change
the difficulty of the problem, e.g. if we promise that the number will always
be even, the Factoring decision problem becomes trivial to solve!

Computational problems in which the input is restricted to some subset
are called promise problems. They give a useful generalisation of decision
problems.

Definition 6 (Promise problem) A promise problem is a partial binary
function f : X 7→ {0, 1} on a countably-infinite subset X ∈ {0, 1}∗ of bit-
strings, where the domain of f is restricted to a countably-infinite subset
S ⊆ X.

The promise is that the input will always come from S, the domain of f .
Clearly, a decision problem can be viewed as a promise problem with the
trivial promise S = X.

When solving a promise problem, we are only required to solve the problem
under the assumption that the promise holds. We are not required to check
the promise. Indeed, if we are given an instance for which the promise does
not hold, we are allowed to output either answer, or even no answer at all.

1.2 Computation
Now that we have a precise definition of computational problems, we need
to know what computation is. There are many different abstract models

c© 2014-2015 Toby Cubitt

12 1.2. COMPUTATION

of computation: Turing machines, lambda calculus, recursive functions, cir-
cuits, cellular automata. . . . However, one of the foundational principles of
theoretical computer science is that:

Thesis 1 (Church-Turing Thesis) All reasonable models of computation
are equivalent.

If we restated the Church-Turing thesis is in terms of a particular model
of computation (e.g. “all reasonable models of computation are equivalent
to Turing machines”) it would become∗ a definition of “reasonable model of
computation”. (Though this perhaps misses part of the point of the thesis.)
In any case, for us the Church-Turing thesis serves as justification for picking
the most convenient model of computation, safe in the knowledge that all the
results we prove will apply equally well to any other model of computation.

We will describe computation in the circuit model. The circuit model is
convenient both because it is intuitively simple† and—importantly for us—it
has a straightforward generalisation to quantum computation.

1.2.1 Classical computation
Definition 7 (Logic gate) A logic gate is a boolean function on one or two
bits: G1 : {0, 1} 7→ {0, 1} or G2 : {0, 1} × {0, 1} 7→ {0, 1}.

The familiar boolean AND, OR and NOT operations are good examples of
logic gates:

AND(x, y) =

{
1 x = y = 1

0 otherwise
, OR(x, y) =

{
1 x = 1 or y = 1

0 otherwise
, (1.1)

NOT (x) =

{
0 x = 1

1 x = 0.
(1.2)

(It’s a well known fact that these gates are universal: any boolean function
can be computed by circuits made up of AND, OR and NOT.)

A circuit is a finite sequence of gates, taking n bits as input and producing
m bits as output. Formally,

Definition 8 (Classical circuit) A classical boolean circuit from n bits to
m bits is a directed acyclic graph, with n vertices of in-degree 0, m vertices
of out-degree 0, and all other vertices have out-degree 1 and in-degree 1 or 2.
Each vertex with non-0 in-degree is labelled by a logic gate, where in-degree 1
(2) vertices are labelled by gates on 1-bit (2-bits).

∗Together with a precise definition of “equivalent”.
†Though this apparent simplicity hides some irritating subtleties.

c© 2014-2015 Toby Cubitt

CHAPTER 1. COMPLEXITY THEORY 13

Classical circuit diagram

Missing

figure

1.2.2 Quantum computation
Definition 9 (Quantum gate) A quantum gate is a unitary operator on
one or two qubits: U1 : C2 7→ C

2 or U2 : C2 ⊗C2 7→ C
2 ⊗C2.

Examples include:

UCNOT = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11| ≡

1

1
0 1
1 0

 (1.3)

Z = |0〉〈0| − |1〉〈1| ≡
(

1 0
0 −1

)
X = |0〉〈1|+ |1〉〈0| ≡

(
0 1
1 0

)
Y = i |1〉〈0| − i |0〉〈1| ≡

(
0 −i
i 0

)
H =

1√
2

(X + Z) ≡ 1√
2

(
1 1
1 −1

)
T = |0〉〈0|+ eiπ/4 |1〉〈1| ≡

(
1 0
0 eiπ/8

)
(1.4)

(In fact, though we will not prove it here, these form a universal quantum gate
set, sometimes called the standard gate set. Any unitary can be approximated
to arbitrary accuracy by quantum circuits made up of these gates.)

Note that unitarity of quantum gates implies that they are necessarily
reversible: U †U = 1 so any gate U has an inverse gate U †. E.g. both the
CNOT gate and Z gate are self-inverses.∗

∗We will not show this here, but it is also possible to perform all classical computation
reversibly, implying that classical computation is a special case of quantum computation.

c© 2014-2015 Toby Cubitt

14 1.3. COMPLEXITY CLASSES

A quantum circuit is a finite sequence of quantum gates, each acting on a
specified subset of qubits. Formally:

Definition 10 (Quantum circuit) A quantum circuit from n qubits to m
qubits is a directed acyclic graph, with n vertices of in-degree 0, m vertices of
out-degree 0, and all other vertices have in-degree 1 or 2 and out-degree equal
to in-degree. Each vertex with non-0 in-degree is labelled by a quantum gate,
where degree 1 (2) vertices are labelled by 1-qubit (2-qubit) quantum gates.

The input |ψ〉 to a quantum circuit is by definition a computational
basis state, i.e. |ψ〉 =

⊗
i |xi〉, |xi〉 ∈ {|0〉 , |1〉}. The output is obtained

by measuring the qubits in the computational basis, i.e. the outcome of
performing the projective measurement {Π(0),Π(1)} on each qubit. Note that
this implies that the outcome of a quantum computation is probabilistic.∗

Quantum circuit diagram

Missing

figure

1.3 Complexity Classes
Now that we have defined computational problems and computation, we are in
a position to introduce the main topic of complexity theory. Complexity classes
classify computational problems according to the scaling of the computational
resources required to solve them.

Literally hundreds of different complexity classes have been defined [Com].
Fortunately, we will only be concerned with the four most important classes
in classical and quantum complexity theory.

1.3.1 Classical complexity classes

We first define two classical complexity classes. Indeed, these are the most
important and most studied classes in complexity theory.

∗One can also define probabilistic classical computation. . . but we will not need to for the
purposes of this course.

c© 2014-2015 Toby Cubitt

CHAPTER 1. COMPLEXITY THEORY 15

Definition 11 (Polynomial-time (P)) P is the class of all decision prob-
lems for which there exists a family of classical circuits Cn s.t. Cn(x) = 1 iff
x is a YES-instance of size n, where Cn has size O(poly(n)).

In a mild but standard abuse of terminology, we will often refer to a family of
circuits such as the one involved in Definition 11 as a polynomial-sized circuit.
Since we are defining computation in the circuit model, we will use “time”
and “circuit size” interchangeably. When we say a problem can be solved in
polynomial-time, we mean that the problem is contained in P, and thus can
be solved using a polynomial-sized circuit.

Many mathematical tasks (strictly speaking their decision variants) are in
P. For example basic arithmetic, computing eigenvalues, inverting a matrix,
testing whether an integer is prime (the latter was only proven in 2002!
[AKS04]).

In some sense, the class P captures the problems we can solve on a
(classical) computer. If a problem is in P, we say that it can be solved
efficiently. This is a somewhat crude definition of “efficient” from a practical
perspective; a problem that takes time n100 to solve is probably not solvable
even on a supercomputer in any practical sense! Whereas a problem that takes
time 2n/100 may be solvable in practice even for moderately large instances, but
isn’t efficiently solvable in the complexity-theoretic sense. The justification
for ignoring polynomials in our definition of computational efficiency is the
following strengthening of the Church Turing Thesis 1:

Thesis 2 (Strong Church-Turing Thesis) All reasonable models of com-
putation have the same efficiency up to polynomial overhead.

Definition 12 (Non-deterministic polynomial-time (NP)) NP is the
class of all decision problems for which there exists a family of polynomial-sized
circuits Cn s.t. if x is a

YES-instance: ∃ polynomial-sized witness w ∈ {0, 1}poly(n) s.t. Cn(x,w) = 1;

NO-instance: ∀ witnesses w, Cn(x,w) = 0.

It is helpful to think of NP as a game between all-powerful (but untrust-
worthy!) Merlin, and less powerful Arthur who (poor lad) can only run
polynomial-time computations. Arthur asks Merlin a yes/no question x, and
Merlin replies with his answer. But Arthur doesn’t trust Merlin, so Merlin
also gives Arthur a simple (poly-time checkable) proof w that the answer is
correct. NP is the class of all problems for which Merlin can convince Arthur
of a YES answer (∃w), but cannot trick him into believing an incorrect NO
answer (∀w).

c© 2014-2015 Toby Cubitt

16 1.3. COMPLEXITY CLASSES

Clearly, any problem in P is also in NP (Arthur can simply compute
the answer for himself, ignoring the witness, and compare his answer with
Merlin’s). But NP also contains many mathematical tasks that are believed
to be difficult, such as the Factoring, Travelling Salesman and SAT problems.

Exercise 2 Convince yourself that these three problems are in NP.

Note that NP does not stand for “non-polynomial”, it stands for “non-deterministic

polynomial-time”. Other than knowing that NP does not mean “non-polynomial”, it’s

best to forget what NP stands for. The name is historical, and comes from an earlier

(equivalent) definition of NP which was much less clear. The modern definition of NP,

given above, has largely obsoleted the original definition. Also note the asymmetry between

YES and NO in the definition of NP. There is a class called co-NP which is defined very

similarly, but with the roles of YES and NO swapped. However, we will not have any use

for co-NP in this course.

1.3.2 Quantum complexity classes
If we allow quantum circuits to be used instead of classical circuits in the
definitions of P and NP, we get quantum versions of these two classes. However,
we have seen that quantum computation is inherently probabilistic, so we
only demand correct answers with high probability.

We first define the quantum version of P:

Definition 13 (Bounded-error quantum polynomial-time (BQP))
BQP is the class of all decision problems for which there exists a family
of polynomial-sized quantum circuits Un s.t. for instance x of size n

Pr(Un outputs “1” on input |x〉)

{
≥ 2

3
YES instance

≤ 1
3

NO instance.
(1.5)

Note that an instance of a BQP problem is still specified by classical data
(which we can w.l.o.g. take to be a length-n bit-string x). The input to the
quantum circuit is therefore a computational basis state |x〉 =

⊗
i |xi〉, as

required by the definition of quantum computation.
The probabilities 2

3
, 1
3

are conventional but arbitrary. We could have
chosen 1− ε, ε for any constant ε, or even any ε = Ω(1/ poly(n)).

Exercise 3 (BQP amplification) Prove that the class BQP is independent
of the choice of probabilities 1− ε, ε as long as ε = Ω(1/ poly(n)).

c© 2014-2015 Toby Cubitt

CHAPTER 1. COMPLEXITY THEORY 17

This may seem to be giving quantum computation an unfair advantage; we demanded
exact answers in our classical complexity classes, whereas we only demanded answers with
high probability in our quantum complexity classes. From a mathematical perspective,
this is indeed an important distinction: the standard quantum complexity classes are
really generalisations of the classical probabilistic versions of P and NP, which we haven’t
seen. Whether the classical probabilistic complexity classes are strictly larger than their
deterministic counterparts (derandomisation) is a major open problem in complexity theory.

It’s worth noting that, from a purely practical perspective, the distinction between

probabilistic and deterministic computation is largely irrelevant. We can never hope to

obtain a correct answer with probability higher than the probability that a component of

our computer makes an error.

Just as P captures the problems we can solve efficiently on a classical
computer, the class BQP in some sense captures those problems we can
solve on a quantum computer. The strong Church-Turing thesis is under
threat! If BQP 6=P, then there exist problems that can be solved efficiently
on a quantum computer, which cannot be solved efficiently by any model of
classical computation. And, since nature itself appears to obey the laws of
quantum mechanics, quantum computation is certainly a reasonable model of
computation (notwithstanding spirited attempts by some scientists to deny
this!).

By now, you can probably guess the definition of the quantum analogue
of NP (again, the probabilities 2

3
, 1
3

are arbitrary conventions):

Definition 14 (Quantum Merlin-Arthur (QMA)) QMA is the class of
all decision problems for which there exists a family of polynomial-sized
quantum verified circuits Un s.t. if x is a

YES-instance: ∃ polynomial-sized quantum witness |w〉 ∈ C
poly(n) s.t.

Pr(Un outputs “1” on input |x〉 |w〉) ≥ 2
3
;

NO-instance: ∀ |w〉 ∈ Cpoly(n), Pr(Un outputs “1” on input |x〉 |w〉 ≤ 1
3
.

All of these complexity classes—P, NP, BQP and QMA—are decision classes: by definition

they only contain decision problems. By allowing promise problems in the definitions, we

immediately get four further complexity classes, called promise-P, promise-NP, promise-

BQP and promise-QMA. Other than this one small change to the definition, there is little

conceptual difference between the decision classes and their promise-versions. Indeed, some

complexity theorists feel that the original definitions were wrong, and should have included

promise-problems all along. We will therefore ignore this technicality, and freely talk about

promise problems being in members of P, NP, BQP and QMA, when strictly speaking they

are members of the promise versions of these classes.

c© 2014-2015 Toby Cubitt

18 1.4. REDUCTION

1.4 Reduction
So far, all we have done is define and categorise computational problems. The
concept of reduction lets us compare the difficulty of different computational
problems. This allows us to rigorously say that one problem is easier or harder
than another. With this, we can go beyond mere cataloguing, and prove
interesting results about computational problems and complexity classes.

There are a number of different types of reduction in complexity theory.
We will only need the most common one:

Definition 15 (Polynomial-time many-one reduction) A decision prob-
lem A reduces to B (denoted A ≤ B) if ∃ map R : A 7→ B which maps
instances a of A to instances b = R(a) of B, s.t. b is a YES-instance iff b is
a YES-instance, and R can be computed by a polynomial-sized circuit.

Polynomial-time many-one reduction is sometimes called Karp reduction. It
is also commonly referred to simply as “polynomial-time reduction”.

If problem A reduces to problem B, then we can solve any instance of A by
first transforming it into B (which we can do efficiently since we can compute
R in polynomial-time), and solving the resulting instance of B. An efficient
method of solving B therefore immediately gives us an efficient method of
solving A. So, in a precise sense, problem A is no harder than problem B
and, conversely, problem B is at least as hard as problem A.

Reduction defines a partial order on decision problems.

Definition 16 (Polynomial-time equivalence) If A ≤ B and B ≤ A,
then we say that A and B are equivalent (denoted A = B).

Polynomial-time reduction allows us to define the final complexity classes
we will need, which are derived from the classes NP and QMA.

Definition 17 (NP-hard) A computational problem B is NP-hard if ∀A ∈
NP : A ≤ B.

Definition 18 (NP-complete) A decision problem B is NP-complete if
A ∈ NP ∩ NP-hard.

NP-hard problems are—in the precise sense defined by reduction—at least
as hard as any problem in NP. Solving any one of them would allow us to
solve every problem in NP. Similarly, NP-complete problems are the hardest
problems in NP. SAT is an example of an NP-complete problem.

QMA-hard and QMA-complete are defined in the obvious analogous way:

c© 2014-2015 Toby Cubitt

CHAPTER 1. COMPLEXITY THEORY 19

Definition 19 (QMA-hard) A computational problem B is QMA-hard if
∀A ∈ QMA : A ≤ B.

Definition 20 (QMA-complete) A decision problem B is NP-complete if
A ∈ QMA ∩QMA-hard.

1.5 Complexity Zoo
What is the relationship between all the complexity classes we have defined?
Some relationships are trivial. We have already seen that P ⊆ NP. Similarly,
BQP ⊆ QMA for much the same reasons. Since classical computation is
a special case of quantum computation∗, we immediately have P ⊆ BQP
and NP ⊆ QMA. However, the question of whether these inclusions are
strict encompasses many of the most important open problems in complexity
theory!

P
?
= NP: This is the (in)famous P vs. NP problem, one of the most important

open problems in mathematics!†

P
?
= BQP: This is one way of capturing precisely the question “are quantum

computers useful?”. If P = BQP, then all decision problems that
are efficiently solvable on a quantum computer could also be solved
efficiently on a classical computer.

BQP
?
= QMA: The quantum analogue of P vs. NP.

NP
?
= QMA: This is open, but considered unlikely for reasons beyond the

scope of this overview.

NP
?

⊆ BQP: Open, but considered unlikely.

The general belief is that all of the inclusions between these classes are
strict (though it is not hard to find complexity theorists who will disagree
with this). However, it could be that they are all equalities, and in fact
P = BQP = NP = QMA! There are good mathematical arguments for
believing the inclusions are strict. The only problem is, there are equally
good arguments for believing the inclusions are in fact equalities.

∗If you accept the claim—not proven in this brief overview—that classical computation
can w.l.o.g. be made reversible.
†At least according to the Clay Mathematics Institute who included it among their seven
Millennium Prize Problems in mathematics, each with a $1,000,000 prize attached.

c© 2014-2015 Toby Cubitt

20 1.5. COMPLEXITY ZOO

A philosophical argument that is sometimes made for why P 6= NP is that
it captures the empirical fact that proving a mathematical result can be very
difficult, whereas checking correctness of an existing proof is typically much
easier. This is not a particularly rigorous argument, but it does capture the
flavour of the difference between the classes P and NP.

Perhaps the strongest complexity-theoretic evidence we have for quantum
computation being strictly more powerful than classical computation is Shor’s
seminal result [Sho97] that Factoring is in BQP (whereas it is not known to
be in P).∗ On the other hand, Factoring is one of the handful of NP problems
that is not known to be NP-complete.

Another reason we expect quantum computation to be more powerful
than classical computation—one very related to this course—is that quantum
many-body systems are notoriously difficult to simulate on classical computers.
Whereas simulating quantum systems is, unsurprisingly, rather easy on a
quantum computer. Indeed, the field of quantum computation was kicked off
by Feynman making exactly this suggestion [Fey85].

Strictly speaking, Definition 11 is wrong! It in fact defines a slightly different complexity
class known as P/poly, which is strictly larger than P.† The reason for this is that are
allowing too much freedom in the family of circuits. As we have defined it, the circuit Cn+1

for problems of size n + 1 doesn’t have to bear any relation to the circuit Cn for problems
of size n. Even though we know a circuit Cn exists for each n, it might be impossible to
compute Cn given n.

To make Definition 11 correct, we should restrict to uniform families of circuits:
families for which Cn can be computed in polynomial-time from n. This definition appears
circular. We are defining polynomial-time computation in terms of uniform families, and
defining uniform families in terms of polynomial-time computation!

In fact, uniform circuit families are defined to be circuits that can be computed in

polynomial-time on a Turing Machine, a model of computation which doesn’t suffer from

these irritating issues. However, this technicality is almost never an issue in practice.

Substituting “uniform circuit” for “circuit” in all the definitions and theorems in this

course will make the statements strictly correct.

∗If Factoring is proven to be in P, much of the public key cryptography used on the internet
would be rendered insecure, as it relies on Factoring being hard.
†Indeed, P/poly contains uncomputable problems!

c© 2014-2015 Toby Cubitt

