Universal Hami:ltonians

We |lhave now a’eu-elofee' & mathomatical

Cormalism of Hemiltorion Si nma ’a‘bfm/\, s

well S  one set of ‘Fools ( Pe.r‘lurlocd;.‘on
Jaa’ lgets) for construct ing mteresting new
S?Mu‘c{' rong

It is 4Line to a/),oﬁ all tlus forralism

to P"Dv-' new  vresults. I i’l«qS Cownrse ,
we will 0”,17 hove time o See one
"‘ppl}Ga‘é’?on : nuniversal Hoawmiltonlans., But

‘b’l'\g HanvilFori an simulation #W‘Ma/t'fm
Aeve{ofea' henre has bj now heen used
to prove a number of other resuls i
1o\mtuw' mformetion ond matlbematical
PLy;Ic,g, 1A Sur PSS dl/fuo/je orea §
'*MJ?A from AdS/CF dua“ij " 7uani‘l>'w\
\7/‘041-3 ) to PoS:‘f:’M-—baseJ uefﬁ'#-'cafa'on
in 7&»@«\{'0»\ cyf%jm/oﬁj . CTamam

i Youch on Some. of ‘Tlese /=
her leckure  corse.)

Here, we w-” r-estﬁct ownr SCofe ‘/'o
proving thal the  Heisenberq wmodel is
universal, and close by explouim.':n] hot.,
tlos forms Fhe basis of the o
classiCication Thaoremn v 2—local 7%6.‘2‘:
Ham)/‘f’o/\n’ws oe Sorme of ,‘-l'f con;equcvl\ceg,



Det (U niversal RHamiltonian)
We say thet a fawnﬁ of
Pamiltonions F 5 vunl verya l £
YVnelN, VH ¢ Hem, ,V 2nm>0, A>)H))
3 H' e F s.2. H’ (4,£,~’)~'S'imo~/a7‘ey M.
We 7M'ol.'c,.°t:7 A SSume WE alwﬂzs hawe ﬂé;
This s strong ! It sas
+hat a U::?%al % el ,_7 of  Haw i/toniangs
<l Simulate 3_[" the f&ysr‘cs' d'F sy
othe,~ Hawmiltomniann to o ,'i»rmlj_aeld

accm¢‘7 up to o FZ:tNﬁg L”?..‘l.

Q/AAU) el - off .

Note: in YLact, we can extend #e
re1v\ 1 7€ wu\'fs 1A 'Ho\ i$ l?ﬁf +o ;mc/ude
Ss‘mula‘hwj Mj -Permiom'c or bofov\i ¢
A awnit lt(om'aw eV an (Fm .'£e) N Mber

o'(' Madogl w‘n'H'\oovt 0L\M 3 o of '{L'e
r~esults which llow . J ?ﬁ -

Det . (S- Hanriltonians)
Let S be a set of local intemclons.

We call The Cana; !y of MHawltorians
{H:H= Z h,, VK hes, «eR]}

'tLe v S-H M{lfov\o'amy“.
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Def .
W S 'L’lﬂ&t SJ“' I—-}M’t’om‘ms con S‘o'mwbqle
S — Hawm) ltorriamge if

e
V He S-Ham 3T R &S -Ham s.2
H’ s'imm/a'bes H

Thm. (Un‘.ML{i) of MHeisendory wmode()
L'et 5 = it\“@iS} ) l"ke.‘; — XX "')’Y +22

Heisenb
S-Hamillonians are univesal. inEermction

I 'Fa,ct, tlhis rfsult holds € ven
i we rest~ect  the te a 2D o

o o o & ° . ;:
S'7uw‘f (o"fh&e / So H‘\ﬁs - <%.‘> O(U A'«) .

We will prove Chis in a  Segquance
of s‘t‘ePS , each of wiluch shows

€Ll ot the HMI[‘toMm; rova the PI‘QW)O«A}'
Si’eP < an QIMula‘}e Hw?l?‘or\:’my with
a  more @M Form, il we
reach all Foariltomnsoans |



Lemma (LcP'18])
Let s = §xX, x2,28x, 2Z, X, 2]
S,_‘ - Howm., Simulates S - Hawm.,

e

_Pf. ( sketch)
H&iscnloer_, encoolu‘vg Jo«dde't:
,

4 .
H:Zl«‘{;m + 61 A

|,J=1 2 3
Ground stotes hove O G«M?/U-tj ¢
9. subspace s _ _

S, = spand W IR, 1Y 2 1S, 3

"= :j"%( 01> ~ I1o>) singlet
T : = Prodeél»ow onto So
bet 1o >:= M 1% >,
1> 2 17D, 15, - 51¥2, ¥,
Wont  to construct differest H,'s s.t.
dH, + H,  simulafes each of the

locel +devrms %) S.



1-body Zerms:

Use Ist order gimulation Ler ma

> need H, st Ho = (H,)_ =TT H,TL = Hyps
Let: Hyiz= 75 My +3 (£-8) Hy-
(Hi)oo = =X, +82 + 5(p-/3«)1
Hecp]ﬂ--" (H')""H. zaX +g%& +3(g-J3)1

= olo\oos‘iv:j o<, appropr-ia‘)‘elj lets wus
simulate 7~7u’n.'t Paul, X & 2 terwms,

% % _
V3 - D ices =gubits

Q‘Lge’ = L’Aeis.

A
2’50{7 'L’QJ'W\S ‘t

Use 2»\4 ord-er' simulai'iow Le hAra

on £Z copies of Mf:ty ju{}efb
% V\—O’QJ H1’ Hz s-t.
(Hi)__= (), M7 (Hpl = Hiamger

Note: 2 copies, so wnow; 1 1/

(gD, ]
= Hls L+ 104" A A
-'_'-- - 7-7:1) ® .’.T~(1) 2 2 Z' 3/



- he is
L?/t H‘L -— gx.d L\,J-

J -1
Lew!w\a > ‘-—,eﬁc - (”1)-- et (”z -4 Ho (pz).‘._

- 1 &
(H2)-4H, C H)e-=g2Z 3 X % (X X )-- @()S' X(' )_.

3.3:",'91
hei :
Hz — l’\ﬂos e L\‘;:f
> Ha,c = = ZL ZL + )= lcal T erms on o>, “>L.
> “G“""L: tz2 + I-local terws

l'\u; he:s
Hz = L“l‘s - “110 ik”'

= T ZX + 1-local terms

L‘Le:s -2 l"‘zzl + ln-”,
I‘H, = XX + 1-local terms

H2=38 by + Shy - 3he7 + Sheo,
= um/u = =XX + T-locol terws

ct\oos.':\} H, a5 above, car cancel out

owxj 1< local tems. O

- - e

\\
22, A A
e



Lenwma ( [OT ’08])
Let S = SXX, xX2,28x 2Z2Z, X,23
<R
) = 2 .
S f'(?; o i € (X, 2} 3

ve. all hk-local quio)'t Ram’s thet

contain no Fauli s in their Pauli
o'ecow\fosat'wns

S- Ham. simulates S'—Ham.

_P_p; (Ske‘}ct\)
APPlﬂ subdivision &oolcge'f' + Obsarvosfkion
that tThis  doesn’t intreduce Ay
Panli Ys 1f Zhere were none
present nmitially, To get to  3-local.

But Hor RkR=3 [k/2] +1 =3, se

;‘ubolt‘u-?ﬁo:n oJQZ' can ¥ reJuce 62/JW
Jead

‘Z-—Ioca(.

Need to use (third oder) 2H-%o0-2 Jodget
from [oOT '08] to cowfle’f& lasi #Gf)'

4 o bservati ow ~H~.‘g al 0@sn 'f }r"'/*nduce NRAv
Pauli Y% eithor.



S ={ @ : oie (X 2}}

) <k
5° = {,g h; € Herm,a, (R)}
S ~Ham. simulsfes S"-—Ham.

P£.
hy wreal = even # Pouls V5
Wlog, aASSume h; = y@Zws & A
k-~
-~ oy €$X,2).

wl'\,o\l'e A -~ 0"{ ,
=1

S;M\A,Gtil)ﬂ LCMMO«

US'C ZV\J"OI‘J‘QI'
Y, = ﬂz‘*z“ = Joxol
Hos X.6(X%?" a1 + (-0 2® " 6 A)

H?. “o

12 2 -~ k o

Hee = *C”z),,,_ ”;1 (H2),.
- loxXo e ( X**"e 4 + -1y Zé;zmcaaA)z

= 2/03(01@()’@’”‘@4 + 1)
L)e,f.p’ﬂ s 2y 9A + 21 .



Lenmwma

S = {i;&h; : h, € Herm, (IR)}

1=

R
s’ :{g he + hi € Herm, (€)})
S ~Ham. S}Mu\loﬁfes S/ - Ham.

Pt
This X1 sti' ‘l'ke Looal C,ow\fle,':u' +to -

real S'wmulation re've a’rea\a'j Seen
’)rtv?ously.

Note: R is du-b:i'mrj, and all
1Mbl'f Hamjlé’aniamg can be
deoowfoseo' into  Paulis
2 S = 3_[_! qulm'f Ham?|$ony ang

Exercise: Show Thet Vn, VW sufficently
(arge 4, £ V¥ g,m >0, oy M ¢ Herm,,
Cann be Q;MulatQJ bj a 7ub:'i' Ham,‘li‘bv\{an.




le\afniv:) these Lewmmas t’?jei'lqe/j we
have proven the claiwmed unive—fSaL'iJ
of the Heisev\bu:? model :

Thm. ( restoted)
Sheir = { XX ¥YY +22])
S.l«e;s' Hoamillonians are wunivesal.

T n Cac't, with sl;jln't'b movre effordt ,
one cann show that  tlis rescult
nemaing true even if  all the

[ocal H&'SQABQ—U Tt ermachions anr~e
restr~cted ‘o « 2D S‘f ware [lattice.

We call alsy extend +his to  include
simaulation of auj bosonic eor ‘ﬁf‘”ﬂ'of\ﬂ’c
(o w[oergjmmefn‘c) Herltonian o
anj (ﬁ)n;fe,) Aum ber ot Mode5 :

S={ Herm, : n<eo

S': i'\-'mode bosonic or fermionic Hoam’s :
n < 0 3

S ~-PRHawm. Simulates 9’-Hum,

PL.
Bo sonsg . HUIS*QFA -’P"‘;MGko'Fp i‘l‘an}fom"‘;on.

Fermions ! amy loeal ermijon~to~- Fud £
W\app;mg U'ordamv L(/I‘,nef' ‘NﬂSqFf];oM)



This is a remarikable wesulyl I+
shows, m a fully rgorous sense, that

the ent, re PlﬁJSl'CS of _?_v_-/\,y_ Hami [fw\ia«n,
in any spaf.'al Aimension — 3d, &d, 114...
(C‘F‘ ho logmp"y ~d Toamarals lea&'w-es),

or- even on in‘t'mc't’o'm JNIDHS with wno
3eomeiﬁc embedding) — Howmiltonalans
with any. loeal or global symmetry,

oS- NO S-ymmetﬁe)’ q‘f a“’ ever7 f’nqSC
of Mat’l'er', indeed ony ths'.ML
FWQMV\DVI wl‘\é\tsoevev"* canm all é& seen

m  the 24 HeiSemLeg mode/ .

This is all +the wove remarkable 35""" the
Heisen .beg model has all -r~eal wmat mx
elements and Lol local SU(z)

Imvormance .

We can FNVQ the aw\a’a‘you} result
Cor the XY —model :
Thwm. (M’wersql..‘fj of X)- moJel)

Sy = {XX + YY)

Sxy — Ham's e wunrversal

PL.
Ve‘y similor To the HQ?S%b&J case .
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Comf’,&‘be classhcica'bfom o'F 2’7ub"t Haw\'}‘

Thwm.

Let S be any Gixed set of 1-
and 2"[064[, qub;‘t iwterao'f'fons' {L‘1}U£L\23
st. A at least owe 2-local lh € 6S.
Then S Rl uto exactly one of

The Qllowiv_\j ca‘}?oﬁes:

MIf 3 U € Sucz) s.t. V¥ h,h,es

Uh, Ut = d“’J , (Uew h,(Leu)t= dv‘aj,
(i-e. S is ”’ocd"y f;MquaV\eO“U’y
A?ajomal.'$qble“)

S- Ham'’s are cniversal classical
Hawmiltonian simulatoers.

(2) Otherwise, if 4 UE5U(2) st. Vh,e s
Wewh, (o)t = x22 + A L+UB8B

for Some o €R, A,R € Herm,

(ie. S is " /oca"] simlbaweously
e'?V“;VﬁI%# to the Hransvarse rﬂ:\j wiodel” )
S- Haw's are  wniversal s+v7ug,_t.-_c

How lEOonjan Simunlators .,

(3) Oﬂqerwise, S~ Ham's ov € un il versal
qumtum [—/am;l‘l‘«'onim s.'Mula,t’oWg.
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PE£. (sketdh)

(1) Lde las Cuevas, Cubitt '14] proved
that Mj classieal HM} lL oniann
with MNMP- com,ol-e'l'e g-s. engny problenm

Ps a wraversal classical simulator.

Cloinn the, Fllows Frowm Lact
classical ISn‘nj model | A/P'comple:te.

(2) Esgeni’ia/fy proven by [BDOT’08J
+ ckeokmj that each step in
Lhair g's. c.omfbexn’b'y reduction in
*cht 3“/‘&5 o S:Mm'atiw\ .

(3) Follows from Gllowing Levma +
¥ universality of Hejsenlozg + X).

Lemma

For & Gowm case C?), S-Hawm.
S?MM/a‘,'es either S.;‘..,~Ham, or Sxy-)-)am.

e

Follows frowm [ Ccubiit ~-Montanam '15]
+ ckeakmj that each step in

the g5 c.omflesfr?b'y reduction in
foct 33v~es o Simulation.
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We haven't said ow:,i’l«my in Thas
lectuvre cowrse about e{p.'c—:enoj_ of
sirulations. One can define an Qfflicient
loc,.l s‘iww[ ai'n‘ov\ to bQ one where

all ,DMw-yl'es ( A’ £, ™, #7nb."i’s m H.)
scale  as Po/y(/\/) or ’/POlyC/\A (os
e\fpmpl\;qte) 11 the b;t vcampk“c:‘i}

of H , Ye. N= HHp'}s req v rad

to descrmbe H,

A" of tk& S'Bmula'ﬁionf we laa,ve
conglvructed i thys  course are in

Cact efl: cient .
Whence we recve~ the !FO”DW)Aj

want ki eneralisation o
chaaeﬁfer s seminal oln'cho‘/‘omj theorern
o clagss cal com//exil') i-l«w_orj,
orlginally ﬁm\m\ by [cm’ 16T & LBH1F]
(the Cw&b; - Montanoro qaaa’n‘chvtom‘y
theor€m )

14



Coro/lwy_
Let S be omy Gixed set of 1-
and 2"[0641, qubf‘t iWTQ-ML&"'ionQ {I’H)Ugl’\z;

Thew tle c—ov-'olez,.‘{,} of *b'hejmmd

stote aaergy problem o S—Ham.t

Gallg into exactl on-e of the

®llow "9 cal egonjes:

(0) P if 9 does not contarn Mj
2-local Terms , otherwise

(1) /\/P*'com'ole;i'e €S s locauy
S'o'mu’t’ameeuslj al:‘ajoulc‘sqéte} othkerwise

(‘2) $+07MA "'c,om'o/@f-e i€ So'mulﬁ'meway
loca lfj ef.m‘valewf to the Transverse
IS;nj wmodel ; otherwise

(3) QMA - c,omplc/‘ﬁ’e i

Mote: This is someltimes said o be

S'i'm;MA iS a “"natwal" Compl @€y

c!«gg aﬁ% all .
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These two classication Z heo vem§,

P Far’f‘tculaf the Lack that both
are exhaustive oand the cases watch
wp exoct Ij, hNats alt a dee,b
comechion Let ween CLomf/Q'zo‘i’J oy
the jrowad state &K un | persal

Simulat 1on .

Twdeed, {for The classical case, this
connection was pProven b_‘/ [dlcc '],

Thwm [aNCC ' 14 ]

NP - hordess of S, endryy wunden~
Farthfunl reduction (? y
=  wafwersal  classical simulation

Somewhat later~, we \C-‘wa’ﬁ wmajed
+o prove the quantum 3er\cral?sai‘;on
of 'bLNS resul‘l".

T hw [kohlﬂ-r, Piddock RBausch, Cubitt '22]
QMA = completeness of g-5. energy
vnder YLa T thluwl r~educt rons

= M:V-Qfs«,' 7(,»0-.4‘&!/‘%/* S';M\A«lmt'f“\

The preof wses all the Hamiltonwian
simulation t'Nory we've built “p,
to 9elhor vith ‘o GOM/)I e‘f'e«"j Ay fLerent



L./a:j of COv\st'M‘l‘frj Simulotions that
also bhas 1¥s roots v Hawmiltowran
c/omf[ex/ifj ond ww?ui' abi&'i'j 'vaeovy
Cin f«ri'»'ou'ar [cX '09] ad [cPW'IL]),
bu\'t' doesn't wuse Pﬂ—fi'wéa‘fiam tholy
at all.



