Quantum Computation and Algorithms Dr. Toby Cubitt

Problem Sheet

Computation and Complexity
1. (a) Prove that the (classical) gate set {AND, NOT, FANOUTY} is universal.

(b) Prove that the TOFFOLI gate can be used to reversibly-compute AN D,
NOT, and FANOUT.

(c) Prove that, without loss of generality, all measurements in a quantum circuit
can be postponed until the very end.

First Algorithms
2. (a) (Euclid’s algorithm) Prove Euclid’s algorithm for computing ged(a, b) works,
and performs O(logb) divisions for b > a. Use this to argue that GCD € P.
(b) (Exponentiation by squaring) Prove that a™ can be computed using O(logn)
multiplications.
Hint: Try calculating 13° by hand. (Pen and paper only, no calculators!) Do
any shortcuts occur to you?

3. (Deutsch-Jozsa) Construct a classical probabilistic algorithm that solves the
Deutsch-Jozsa problem with probability > 1 — € using O(log1/¢€) queries to the
black-box oracle.

QFT and Phase Estimation
4. (QFT) Show that for any ¢, there is a circuit ﬁ on n qubits such that:

(i). The circuit contains only O(poly n) gates from the standard gate set.
(). |QF T — QFT| < 6.

Hint: Consider the circuit obtained by dropping all controlled-phase gates with
exponentially small phase rotations from the original QFT circuit.

5. (Phase Estimation) Prove that running the phase estimation circuit for black-box
unitary U on an arbitrary input state ¢, produces an estimate 6; to the phase 6; of
the eigenvalue associated with eigenvector |p;) of U, chosen at random according to

probability distribution |{¢|e;)|?.

Shor’s algorithm
6. (a) Prove that U, defined by U, |x) = |ax (mod N)) is unitary if ged(a, N) = 1.
(b) Using exponentiation by squaring and properties of modular arithmetic, or
otherwise, show that U2" can be implemented in time O(poly n).

7. Prove that there is a quantum algorithm that solves order-finding with success
probability > 1 — ¢ in total run-time O(n?lognlog1/4).
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Grover’s algorithm
8. (Exact Grover search) Let f: {0,1}" — 0,1 be a black-box boolean function.
Let g = >_, j(y=1 [2) (x| where x € {0,1}" and 14 be the projector onto the
“good” subspace. Assume that the state 1)) = s|p) + c|ot) can be constructed
efficiently, and that the value s is known.

By adjoining an extra qubit (suitably extending the notion of goodness/badness
from x to x0 and x1) and using at most one extra (quantum) query to f, show that
the Amplitude Amplification algorithm for unstructured search can be made exact.
Le. the final measurement of the modified process will yield an = such that f(z) =1
with certainty.

Hint: Recall Grover search for “I in 4”.

Part B-style exam questions
9. Bernstein-Vazirani Let s € {0,1}" be an n-bit string. Let f : {0,1}" — {0,1}
be the boolean function defined by f(z) = -5 = 215 © 22852 -+ D T, S,.
Let Uy |z)|b) = |z) |b® f(x)) be the corresponding quantum oracle for f, where
b € {0,1} is a single bit. (& denotes addition modulo 2.) Using a construction
similar to the Deutsch-Jozsa algorithm, or otherwise, prove that there is a quantum
algorithm that determines s using only one query to Uy.

10. Period finding

(a) Let f :7Z, — 7Z,, be a periodic boolean function with period r. Le. f(x +r
(mod n)) = f(z) (mod m). Let Uy |z) |y) = |z) |y @ f(z)) be the correspond-
ing quantum oracle for f. By using the inverse-QFT, or otherwise, show how
a single query to Uy suffices to obtain a value kn/r, with k € {0,...,r — 1}
chosen uniformly at random.

(b) Briefly explain how this could be applied to solve the Order-Finding problem.



