
Quantum Mechanics Question sheet 8, 2010

1. The spin observable for an arbitrary direction
The operator J(θ, φ) corresponding to spin in the spatial direction (θ, φ) in spherical coordinates
on the unit sphere in three dimensions is

J(θ, φ) = sin θ cosφJ1 + sin θ sinφJ2 + cos θJ3.

Consider the spin-1/2 representation.
(a) Show that the eigenvalues of J(θ, φ) are ±h̄/2 and that the corresponding normalised eigen-
vectors may be taken to be
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and
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(b) Show that the pair of vectors |θ, φ〉 and |π − θ, φ+ π〉 form an orthonormal basis for C2 (for
fixed values of θ, φ).
(c) Show also that the operator J(θ, φ) may be written in terms of the projectors onto |θ, φ〉 and
|π − θ, φ+ π〉 as

J(θ, φ) =
h̄

2
|θ, φ〉〈θ, φ| − h̄

2
|π − θ, φ+ π〉〈π − θ, φ+ π| .

2. Measurement of spin in arbitrary directions
Consider a spin-1/2 particle in the state

∣∣1
2

〉
. By writing the state in terms of the eigenstates of

J(θ, φ) (defined in question 1), or otherwise, calculate the probability that the eigenvalue h̄/2 is
found when J(θ, φ) is measured.

3. The uncertainty relations for spin
(a) Derive the following uncertainty relation for spin from the commutation relations:

∆|ψ〉(J1) ∆|ψ〉(J2) ≥ h̄

2

∣∣∣E|ψ〉(J3)
∣∣∣. (1)

(note that the right hand side of this equation depends on the state |ψ〉 unlike the case for the
canonical commutation relations). Under what circumstances is there equality in eq. (1)?
(b) Calculate the terms in the uncertainty relation above for the state |ψ〉 =

∣∣1
2

〉
, and confirm

that the uncertainty relation is satisfied. Comment on your answer in the light of your answer
to the last part of (a).
(c) Calculate ∆|ψ〉(J1) for the state

|ψ〉=
1√
2

(∣∣∣∣12
〉

+

∣∣∣∣−1

2

〉)
.

Is this value consistent with the uncertainty relation?
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4. Tensor product operations
Let us define the operators X, Y and Z on C2 be

X |0〉= |1〉 ; X |1〉= |0〉
Y |0〉= i |1〉 ; Y |1〉= −i |0〉
Z |0〉= |0〉 ; Z |1〉= − |1〉 .

and let 1 denote the identity operator on C2.
(i) Show that the operator X ⊗ 1 on C2 ⊗C2 is unitary. You may use, without proof, the facts
that (A⊗B)† = A† ⊗B†, and (A⊗B) (C ⊗D) = AC ⊗BD, for operators A,B,C,D.
(ii) Let |Ψ〉 be the state

|Ψ〉=
1√
2

(|0〉 |1〉− |1〉 |0〉)

on C2 ⊗C2. Calculate |ΨX〉= X ⊗ 1 |Ψ〉.
(iii) Calculate also |ΨY 〉 = Y ⊗ 1 |Ψ〉, and |ΨZ〉 = Z ⊗ 1 |Ψ〉. Show that the four states
|Ψ〉 , |ΨX〉 , |ΨY 〉, |ΨZ〉 form an orthonormal basis for C2 ⊗C2.

5. Correlated measurements on states of two two-level systems
Consider two quantum particles each of which lives in a two dimensional Hilbert space. The
particles are in the state

|Ψ0〉= |0〉 |0〉 ,

where |0〉 and |1〉 are orthonormal basis states for each Hilbert space. The first particle is held
by an observer, Alice, and the second by an observer, Bob.
Let X, Y and Z be the Pauli operators.
(i) Write each of the operators X, Y and Z in diagonal form.
(ii) Show that if Alice and Bob both measure Z on their particle (where the pair of particles is
in state |Ψ0〉), they always get the same answer as each other.
Do their answers always agree if they both measure X or Y ?
(iii) Consider now that instead of |Ψ0〉 the particles are in the state

|Ψ1〉=
1√
2

(|0〉 |1〉− |1〉 |0〉) .

Show that if Alice and Bob both measure X, Y or Z, they always get anti-correlated answers.
(iv) More generally calculate the post-measurement state of the particles if Alice measures

K(θ, φ) = sin θ cosφX + sin θ sinφY + cos θZ,

on the state |Ψ1〉 and finds the eigenvalue 1.
What eigenvalue does Bob find if he now measures the same operator K(θ, φ) on his particle [i.e.
on the state arising after Alice’s measurement]?
Show that whatever eigenvalue Alice finds when she measures K(θ, φ), she and Bob always get
anti-correlated answers if they both measure the same operator.
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6. The Clauser-Horne-Shimony-Holt inequality
As described in the lectures, the CHSH inequality

E(a1b1) +E(a1b2) +E(a2b1)−E(a2b2) ≤ 2 (2)

concerns the experimental situation where a source emits two classical particles, one sent to Alice
and one to Bob; Alice and Bob are located sufficiently far apart that no signal can travel from
one to the other while the experiment is being performed. Alice has two choices of measurement
A1 and A2, with outcomes a1 if she chooses to perform the first measurement and a2 if she
chooses to perform the second. Similarly Bob has two choices of measurements B1 and B2, with
outcomes denoted b1 and b2. We assume that a1, a2, b1, b2 can only take the values +1 or −1.
(i) Consider now that the source emits two quantum particles; one to Alice and one to Bob. The
particles are in a state of the form

|Ψ1〉= |v〉 |u〉 , (3)

where |v〉 is a state in Alice’s Hilbert space and |u〉 is a state in Bob’s. Show there are no choices
of local quantum observables A1, A2, B1, B2 which violate eq. (2).
(ii) Consider now that instead of eq. (3), the source prepares the entangled state

|Ψ2〉=
1√
2

(|0〉 |0〉+ |1〉 |1〉) , (4)

where |0〉 and |1〉 are orthonormal basis states for the Hilbert space C2.
Show that for A1 = X, A2 = Z, B1 = (X + Z)/

√
2, B2 = (X − Z)/

√
2, the predictions of

quantum mechanics violate the CHSH inequality. (The Pauli operators X and Z are defined in
question 4).
(iii) Consider now that Alice and Bob both measure one of two operators O1 or O2 on their
subsystem, where

O1 = αZ + βX; O2 = γZ + δX,

and α, β, γ, δ are complex constants. Find conditions on α, β, γ, δ for O1 and O2 to be self-adjoint
and to have eigenvalues +1 and −1.
As in part (ii) of this question, the state of the two particles is |Ψ2〉. Calculate the expected
values of O1 ⊗ O1, O1 ⊗ O2, O2 ⊗ O1, O2 ⊗ O2, in the state |Ψ2〉. Imagine that Alice and Bob
must fix α, β, γ, δ at the beginning of the experiment and that they can each only measure O1

or O2 for these given values of α, β, γ, δ. Are there any choices of α, β, γ, δ (for which O1 and
O2 are self-adjoint and have eigenvalues +1 and −1) for which the expected values violate the
CHSH inequality?

[Hint for part (iii): it will help to note that the following inequality holds:

|ac+ bd| ≤
√
a2 + b2

√
c2 + d2

for any real numbers a, b, c, d.]
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7. The Mermin inequality
The Mermin inequality

E(a1b1c2) +E(a1b2c1) +E(a2b1c1)−E(a2b2c2) ≤ 2 (5)

concerns the experimental situation where a source emits three classical particles, one sent to
Alice, one to Bob and one to Charlie; Alice, Bob and Charlie are located sufficiently far apart
that no signal can travel from one to the other while the experiment is being performed. Alice
can measure two properties of her particle; the outcomes are a1 and a2. Similarly Bob and
Charlie can measure two properties of the particle they receive; the outcomes are b1 and b2 (resp.
c1 and c2). We assume that a1, a2, b1, b2, c1, c2 can only be +1 or −1.
(i) Prove the Mermin inequality for classical particles. [Hint: consider the case a1 = a2 = 1,
the resulting expression is similar to the CHSH inequality; hence prove the bound for this case.
Argue similarly for the other cases.]
(i) Consider now that the source emits three quantum particles; one to each of Alice, Bob and
Charlie. The particles are in a state of the form

|Ψ〉=
1√
2

(|0〉 |0〉 |0〉+ |1〉 |1〉 |1〉) . (6)

Consider that Alice, Bob and Charlie measure Y or −X. Show that the predictions of quantum
mechanics violate the Mermin inequality.
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